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a b s t r a c t 

Local rough sets as a generalization of classical rough sets not only inherit the advan- 

tages of classical rough sets which can handle imprecise, fuzzy and uncertain data, but 

also break through the limitation of classical rough sets requiring large amount of labeled 

data. The existing researches on local rough sets mainly use the relative quantitative in- 

formation between a target concept and equivalence classes of those objects contained in 

the target concept to approximate the target concept. This ignores the information differ- 

ences of equivalence classes concerned containing the relevant concept, namely the ab- 

solute quantitative information. We propose Local Logical Disjunction Double-quantitative 

Rough Sets (LLDDRS) model based on the importance, completeness and complementary 

nature of the relative and absolute quantitative information to describe an approximation 

space. This provides an effective tool for discovering knowledge and making decisions in 

relation to large data sets. In this paper we first study the important properties, optimal 

computing of rough regions and decision rules of the LLDDRS model. Then we explore the 

relationships of the proposed LLDDRS model and other representative models. Finally, we 

present experimental comparisons showing the computational efficiency and approximate 

accuracy of the LLDDRS model in concept approximation. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

With the development of information technology, mass data with a large number of uncertainties and complex types

have emerged. This creates higher requirements for data analysis tools. Rough set theory (RS) [20] is a mathematical tool

proposed by Pawlak in 1982 to quantitatively analyze imprecise, inconsistent and incomplete information and knowledge.

This theory has been widely used in intelligent information processing field such as pattern recognition [27] , knowledge

discovery [47] , uncertainty analysis [17] , and so on. Compared with other uncertainty analysis tools, we have found that the

most significant advantage of RS is that it does not require any prior information besides the data to be dealt with itself.

Thus the description of the uncertainty of the problem using RS will be more objective [30] . 

In the RS model, the requirement of the set inclusion relation between equivalence classes and an approximated concept

is very strict, so that it lacks fault tolerance capabilities. In order to enhance the practicability of the RS model, researchers

have extended Pawlak’s rough sets from binary relations to approximation sets and inclusion operators. Many extension

models are proposed based on the constructive method, such as tolerance rough sets [28] , dominance-based rough sets [5] ,
∗ Corresponding author. 
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fuzzy rough sets and rough fuzzy sets [2] , graded rough sets [35] , and probabilistic rough sets [29] and so on. In particular,

conditional probability is a suitable inclusion measure [34] , which can reflect the relative quantitative information between

equivalence classes and the approximated concept. Based on conditional probability, various probabilistic rough set models

have been proposed. These include 0.5-probabilistic rough sets [22] , decision-theoretic rough sets [37] , variable precision

rough sets [43] , parameterized rough sets [21] , Bayesian rough sets [26] and game-theoretic rough sets [7] . Meanwhile, Yao

and Lin [35] proposed a graded rough set model basing on a non-probabilistic inclusion measure, which mainly reflects the

absolute quantitative information between sets. The relative and the absolute quantitative information are two distinctive

objective sides that describe an approximation space, and each has its own virtues and application environments so that

neither can be neglected. Many double quantification models have been proposed. Zhang et al. [48–50] proposed different

double-quantitative rough set models based on logical and crossed combinations of precision and grade. More generally, Yao

and Deng [34] proposed a framework of quantitative rough sets based on different classes of subsethood measures which are

generalizations of the set inclusion relation. In order to reduce the loss caused by inappropriate decision-making resulting

from insufficient information consideration, this paper studies concept approximation and decision theory in large data sets

based on relative and absolute quantitative information. 

Decision-theoretic rough sets (DTRS) [33] are an outstanding model for describing an approximation space based on rel-

ative quantitative information. There are many remarkable theoretical researches on the DTRS model [3,12,14,15,19,23,38,44] ,

and the DTRS theory has been widely used in many fields such as text classification [36] , email filtering [45] , oil exploita-

tion [16] , policy decisions [13] , web-based medical decision support systems [46] and E-learning systems [1] . Considering

that the completeness of double quantification can reduce the uncertainty of concept description to some extent in com-

plex environments [48–50] , many researchers proposed more general decision rough set models based on the DTRS model

and absolute quantitative information. Li and Xu [11] proposed two double-quantitative decision-theoretic rough set mod-

els based on the crossed combinations of decision-theoretic and graded rough sets. Xu and Guo [32] proposed generalized

multi-granulation double-quantitative decision-theoretic rough sets based on the majority decision principle and double- 

quantitative decision-theoretic rough sets. Fan et al. [4] studied two kinds of double-quantitative rough fuzzy sets based on

the logical combinations of decision-theoretic and graded rough sets. Yu et al. [42] studied double-quantitative decision-

theoretic approaches based on optimistic, pessimistic and medium risk preferences. 

Nowadays, the amount of available data is rapidly increasing and the scale is getting larger and larger. All the above

extension models of rough sets, called global rough sets by some scholars, need to consider equivalence classes of all ob-

jects in the universe (the whole data set) when calculating upper and lower approximations of a target concept. Therefore,

processing with rough data analysis tools based on global rough sets are very time-consuming or even infeasible in large

data sets [24] . Moreover, from the perspective of machine learning, these global rough sets often require a large amount

of labeled data for knowledge discovery, and so can be regarded as supervised learning methods. However, in massive data

environment, labeling data is an expensive and laborious task and sometimes even infeasible. 

In order to enhance the feasibility of rough data analysis in large data sets, some scholars have proposed new data analy-

sis methods based on rough set theory [9,10,18,24,25,31,39–41] . Qian et al. [24] first proposed local rough sets (LRS) for large

data sets based on the DTRS and RS models, which only consider equivalence classes of objects in the target concept when

calculating upper and lower approximations of a target concept. Later, Wang et al. [31] and Qian et al. [25] proposed local

neighborhood rough sets and multi-granulation local rough sets, respectively. The main differences between LRS and the

corresponding global rough sets are: (1) the time complexity of computing the upper and lower approximations of a con-

cept in LRS is always linear in large data sets, but the computation of approximations in global rough sets is non-linear and

extremely time-consuming [24,25,31] . (2) In large data sets, LRS is a semi-supervised learning method to discover knowl-

edge, while the corresponding global rough set model is a supervised learning method to discover knowledge [24,25,31] . (3)

The classifier based on LRS may have certain generalization ability when compared to the classifier based on global rough

sets [25,31] . In this paper, we mainly study concept approximation and decision theory in large data sets based on local

theory and double-quantitative information. 

The existing researches on local rough sets only consider relative quantitative information between equivalence classes

and the approximated target concept. However, the relative quantitative information merely reflects the intersection relation

between equivalence classes and the approximated concept from the point of view of quantity. It ignores the information

differences of different equivalence classes containing the target concept. When information in one aspect is not well de-

scribed by the equivalence relation in approximation spaces, the description of the relative quantitative information will

have a certain deviation from the actual state. The relative and absolute quantitative information are often close, comple-

mentary and dialectical. These two kinds of information are indispensable in describing an approximation space. 

In real life, there are many problems that need to consider relative and absolute quantitative information. Such problems

include talent recruitment, resource allocation and company financing and so on [6,11,42,48–50] . For example, in univer-

sity teacher recruitment, the university would put forward different requirements regarding the scientific research ability

of graduating PhD students concerned based on the quality and quantity of their published articles. Therefore, this paper

studies concept approximation and decision theory in large data sets based on local idea and double-quantitative informa-

tion of the set inclusion relation between equivalence classes and the concept to be approximated. In consideration of the

graded rough set (GRS) model [35] , a representative model for approximating concepts using absolute quantitative infor-

mation, we propose a Local Logical Disjunction Double-quantitative Rough Set (LLDDRS) model based on local rough sets

(LRS) and graded rough sets (GRS). It is useful to combine local rough sets with graded rough sets based on the advantage
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Table 1 

A loss function. 

X ( P ) X C ( N ) 

a P λPP λPN 

a B λBP λBN 

a N λNP λNN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of computational efficiency of local rough sets and the ability of more accurate approximation space description of double

quantification model. 

The main contributions of this paper are as follows: (1) we propose a LLDDRS model as a generalization of classical

rough sets. This model has strong double fault tolerance capabilities which can adapt to increasing complex environments

and provide more accurate concept descriptions. (2) We propose an effective rough data analysis method for large data

sets, which can make full use of information to discover knowledge and make decisions. (3) We provide the expressions of

optimal computation for rough regions, and the detailed and understandable decision rules. 

The rest of the paper is organized as follows. In Section 2 , some basic concepts of rough sets and DTRS, LRS and GRS are

briefly introduced. In Section 3 , we describe our proposed Local Logical Disjunction Double-quantitative Rough Sets (LLDDRS)

model and study its important properties, rough regions and decision rules. At the same time, we design two algorithms

to calculate the upper and lower approximations and rough regions of the LLDDRS model, and study the relationships of

the LLDDRS model and other models in detail. In Section 4 , the LLDDRS theory and the advantages of the LLDDRS model

are illustrated by a medical example. In Section 5 , the feasibility, necessity and validity of the proposed LLDDRS model for

rough analysis on large data sets are verified by numerical experiments from the perspective of computational efficiency

and approximation accuracy of concept approximation. Section 6 concludes the paper and elaborates on future studies. 

2. Preliminaries 

In this section, some basic concepts of rough sets, decision-theoretic rough sets, local rough sets and graded rough sets

are briefly introduced. More details can be found in [20,24,33,35,37] . In this paper, we assume that the universe U is a

nonempty set, P ( U ) is a power set which is made up of all subsets of U and R is an equivalence relation on the universe.

And X 

C denotes the complementary set of set X and the symbol | · | denotes the cardinality of a set. 

2.1. Pawlak rough sets (RS) 

Let U be a finite universe and R be an equivalence relation on the U , then ( U, R ) is called an approximation space. For an

arbitrary subset X ⊆ U , the upper and lower approximations of X are defined as follows [20] : 

R (X ) = ∪{ [ x ] R : [ x ] R ∩ X � = ∅} = { x ∈ U : [ x ] R ∩ X � = ∅} , 
R (X ) = ∪{ [ x ] R : [ x ] R ⊆ X} = { x ∈ U : [ x ] R ⊆ X} , where [ x ] R is the equivalence class of x under the equivalence relation R ,

which are made up of objects with the same description as x under the relation R , namely [ x ] R = { y ∈ U : (x, y ) ∈ R } . The

equivalence classes are the basic building blocks to construct rough set approximations. Based on the lower and upper

approximations, the positive region pos ( X ), negative region neg ( X ), and boundary region bnd ( X ) of X are defined as: pos (X ) =
R (X ) , neg(X ) = ( R (X )) C , bnd(X ) = R (X ) − R (X ) , respectively. Obviously, the three regions form a partition of the universe. 

Let ( U, C ∪ D ) be a decision table, where C is a condition attribute set and D is a decision attribute set, which can generate

different equivalence relations. The approximation accuracy of C with respect to D in the RS model is defined as ρ(C, D ) =
∑ {| R C (Y i ) | : Y i ∈ U/R D } ∑ {| Y i | : Y i ∈ U/R D } , where U/R D = { Y 1 , Y 2 , . . . , Y s } is a partition of U under D and R, R D denote the equivalence relations of U

under C and D , respectively. 

2.2. Decision-theoretic rough sets (DTRS) 

Decision-theoretic rough sets [33,37] are the relative quantitative generalization of the qualitative rough sets, which have

fault tolerance capabilities and enhance the practicability of the RS model. As a special probabilistic generalization model, it

makes decisions based on the minimum Bayesian expectation risk. 

Let U be the universe, and X be any subset of U . For any object x ∈ U about an approximated concept X , there are two

states. Let � = { X, X C } denote the set of states, which indicates that an object is in a decision class X and not in X . And

under different states, there are three actions that can be taken for any object x . The set of actions can be denoted by

A = { a P , a B , a N } , where a P , a B and a N denote the three actions in classifying an object, deciding pos ( X ), deciding bnd ( X ), and

deciding neg ( X ), respectively. Let λiP and λiN ( i ∈ { P, B, N }) represent the loss incurred for taking action a i when an object

belongs to X and does not belong to X , respectively. The loss function is shown in Table 1 . 

Let P ( X |[ x ] R ) and P ( X 

C |[ x ] R ) represent the probabilities that an object x in the equivalence class [ x ] R belongs to X and X 

C ,

respectively. Base on the loss function, the expected loss associated with taking the individual actions for the objects in [ x ] 
R 
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can be expressed as: 

R (a P | [ x ] R ) = λPP P (X | [ x ] R ) + λPN P (X 

C | [ x ] R ) ;
R (a B | [ x ] R ) = λBP P (X | [ x ] R ) + λBN P (X 

C | [ x ] R ) ;
R (a N | [ x ] R ) = λNP P (X | [ x ] R ) + λNN P (X 

C | [ x ] R ) . 
where P (X| [ x ] R ) = | X ∩ [ x ] R | / | [ x ] R | and P (X| [ x ] R ) + P (X C | [ x ] R ) = 1 . 

We have the following minimum-risk decision rules by using the Bayesian decision procedure: 

( P ) If R ( a P |[ x ] R ) ≤ R ( a B |[ x ] R ) and R ( a P |[ x ] R ) ≤ R ( a N |[ x ] R ), decide pos ( X ); 

( B ) If R ( a B |[ x ] R ) ≤ R ( a P |[ x ] R ) and R ( a B |[ x ] R ) ≤ R ( a N |[ x ] R ), decide bnd ( X ); 

( N ) If R ( a N |[ x ] R ) ≤ R ( a P |[ x ] R ) and R ( a N |[ x ] R ) ≤ R ( a B |[ x ] R ), decide neg ( X ). 

In actual situations, we always assume that the loss of classifying an object x belonging to X into the positive region

pos ( X ) is less than or equal to the loss of classifying x into the boundary region bnd ( X ), and both of these losses are strictly

less than the loss of classifying x into the negative region neg ( X ). The reverse order of losses is used for classifying an

object that does not belong to X . The details are λPP ≤λBP < λNP and λNN ≤λBN < λPN . In this case, the decision rules can be

expressed as 

( P ) If P ( X |[ x ] R ) ≥α and P ( X |[ x ] R ) ≥γ , decide pos ( X ), 

( B ) If P ( X |[ x ] R ) ≤α and P ( X |[ x ] R ) ≥β , decide bnd ( X ), 

( N ) If P ( X |[ x ] R ) ≤β and P ( X |[ x ] R ) ≤γ , decide neg ( X ), where parameters α, β , γ can be calculated by α =
λPN −λBN 

(λPN −λBN )+(λBP −λPP ) 
, β = 

λBN −λNN 
(λBN −λNN )+(λNP −λBP ) 

, and γ = 

λPN −λNN 
(λPN −λNN )+(λNP −λPP ) 

. 

If a loss function further satisfies the condition: (λNP − λBP )(λPN − λBN ) ≥ (λBP − λPP )(λBN − λNN ) , then we can get

0 ≤β < γ < α ≤ 1. The decision rules are further simplified to 

( P ) If P ( X |[ x ] R ) ≥α, decide pos ( X ); 

( B ) If β < P ( X |[ x ] R ) < α, decide bnd ( X ); 

( N ) If P ( X |[ x ] R ) ≤β , decide neg ( X ). 

This paper mainly studies the decision model under a loss function satisfying the condition (λNP − λBP )(λPN − λBN ) ≥
(λBP − λPP )(λBN − λNN ) . And the upper and lower approximations of the DTRS model in such case can be expressed as

R (α,β) (X ) = { x ∈ U : P (X| [ x ] R ) > β}; R (α,β) (X ) = { x ∈ U : P (X| [ x ] R ) ≥ α} . Similarly, rough regions of X in the DTRS model can

be defined as pos (α,β) (X ) = R (α,β) (X ) , neg (α,β) (X ) = ( R (α,β) (X )) C , bnd (α,β) (X ) = R (α,β) (X ) − R (α,β) (X ) . 

When α = 1 , β = 0 , we have R (α,β) (X ) = R (X ) and R (α,β) (X ) = R (X ) . Therefore, the decision-theoretic rough set model

is a generalization of the rough set model. 

2.3. Local rough sets (LRS) 

Considering the three challenges of global rough sets in big data sets namely limited labeled property of big data, com-

putational inefficiency and over-fitting in attribute reduction, Qian et al. [24] proposed local rough sets with fault tolerance

capabilities. Local rough sets (LRS) provide an effective and efficient rough data analysis tool for large data sets, which makes

it possible for rough set theory to be widely applied in big data sets. 

Let ( U, R ) be an approximation space, and D be an inclusion degree defined on the P ( U ) × P ( U ). For any subset X ⊆ U , the

upper and lower approximations of X are defined as 

LR (α,β) (X ) = ∪{ [ x ] R : D(X/ [ x ] R ) > β, x ∈ X} , 
LR (α,β) (X ) = { x : D(X/ [ x ] R ) ≥ α, x ∈ X} . 
Without loss of generality, in this paper we choose conditional probability function as the inclusion degree, namely

D(X/ [ x ] R ) = P (X| [ x ] R ) = | [ x ] R ∩ X| / | [ x ] R | . Other inclusion degrees are mentioned in the literature [24] . When α = 1 , β = 0 ,

we have LR (α,β) (X ) = R (X ) and LR (α,β) (X ) = R (X ) . Therefore, the local rough set model is a generalization of the Pawlak

rough set model. 

In the following, we give the semantics of and differences between local rough sets and rough sets. 

First, in the Pawlak rough set, the upper and lower approximations of X can further be expressed as 

R (X ) = ∪{ [ x ] R | [ x ] R ∩ X � = ∅ , x ∈ U} = ∪{ [ x ] R | P (X| [ x ] R ) > 0 , x ∈ U} = ∪{ [ x ] R | P (X| [ x ] R ) > 0 , x ∈ X} , 
R (X ) = ∪{ [ x ] R | [ x ] R ⊆ X, x ∈ U} = { x : P (X| [ x ] R ) = 1 , x ∈ U} = { x : P (X| [ x ] R ) = 1 , x ∈ X} . 
In the Pawlak rough set model, R (X ) is the union of the equivalence classes of objects in X whose probability (inclusion

degree) with respect to X exceeds 0; R ( X ) is the objects set where the probability (inclusion degree) of each object belonging

to X equals 1. In the local rough set model, LR (α,β) (X ) is the union of the equivalence classes of objects in X whose prob-

ability (inclusion degree) with respect to X exceeds β; LR ( α, β) ( X ) is the objects set where the probability (inclusion degree)

of each object belonging to X is greater than or equal to α. 

The local rough set model excavates the deeper essence of Pawlak rough set, which can be used as a semi-supervised

learning method for data mining. Moreover, the introduction of decision-making risk threshold parameters α, β makes the

local rough set model have certain fault tolerance capabilities. Therefore, the LRS model is not only a generalization of

the Pawlak rough set model, but also an innovation of the classical model in computational efficiency and fault tolerance

capability. 
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At the same time, we give the relationships between LRS and the corresponding global rough set model. 

In the corresponding global rough set model [24] , the upper and lower approximations of X are defined as 

GR (α,β) (X ) = ∪{ [ x ] R | P (X| [ x ] R ) > β, x ∈ U} = ∪{ [ x ] R | P (X| [ x ] R ) > β, x ∈ X} , 
GR (α,β) (X ) = ∪{ [ x ] R | P (X| [ x ] R ) ≥ α, x ∈ U} = ∪{ [ x ] R | P (X| [ x ] R ) ≥ α, x ∈ X} . 
After further analysis, Qian et al. [25] pointed out that GR (α,β) (X ) = LR (α,β) (X ) and LR ( α, β) ( X ) ⊆ X ⊆ GR ( α, β) ( X ). Moreover,

LR (α,β) (X ) = GR (α,β) (X ) if and only if ∀ x ∈ X , [ x ] R ⊆ X namely α = 1 . Therefore, LRS is not only a generalization of probabilistic

models, but also an innovation of probabilistic models in computational efficiency. 

In this paper, in order to speed up the computational efficiency of approximations and rough regions in local rough

sets, we propose the following simplest expressions after excluding objects from the perspective of set element description,

namely 

LR β (X ) = ∪{ [ x ] R : P (X| [ x ] R ) > β, x ∈ X} = { x : P (X| [ x ] R ) > β, x ∈ U} = { x : P (X| [ x ] R ) > β, x ∈ U 0 } ; 
LR α(X ) = { x : P (X| [ x ] R ) ≥ α, x ∈ X} , where U 0 = U − ∪{ [ x ] R : [ x ] R ∩ X = ∅} = R (X ) = ∪{ [ x ] R : x ∈ X} and parameters α, β

are determined by the loss function. Because the upper approximation R (X ) of the RS model contains all objects with re-

spect to X with non-zero probability, we search the objects with probability greater than β in this scope to further accelerate

the calculation speed of LR β (X ) . 

2.4. Graded rough sets (GRS) 

Yao and Lin [35] focused on the absolute quantitative information depicting intersecting degree of the target concept and

equivalence classes during the process of approximating concepts, and proposed graded rough sets. The GRS model with

fault tolerance capabilities is an absolute quantitative generalization of rough sets. The graded rough set model degenerates

into the rough set model when grade parameter equals 0. 

Let ( U, R ) be an approximation space, and grade parameter k ∈ N be a nonnegative integer. For any subset X ⊆ U , the

upper and lower approximations of X under the grade k are defined as follows: 

R k (X ) = { x ∈ U : | X ∩ [ x ] R | > k } , 
R k (X ) = { x ∈ U : | [ x ] R | − | X ∩ [ x ] R | ≤ k } = { x ∈ U : | [ x ] R ∩ X C | ≤ k } , where | X ∩ [ x ] R | denotes the internal grade of [ x ] R with

respect to X and | [ x ] R | − | X ∩ [ x ] R | denotes the external grade of [ x ] R with respect to X [49] . 

3. Local logical disjunction double-quantitative rough sets (LLDDRS) 

Local rough sets (LRS) provide a new method for rough data analysis under big data sets. In order to extract more useful

information in the boundary region of the LRS model, we introduce the absolute quantitative information characterized by

grade index into it. The completeness of the double quantification leads to a more refined description of the uncertainty,

and the uncertainty is thereby decreased to some extent. 

First, the local graded rough set is proposed by introducing local ideas into the graded rough set model. The details are

shown in the following. In order to facilitate descriptions, we provide some explanations to the symbols used in this section.

Symbol ( U, R ) denotes an approximation space, X and U 0 = ∪{ [ x ] R : x ∈ X} denote two subsets of the universe U , N is the set

of nonnegative integers, k ∈ N , α, β ∈ [0, 1] and β ≤α. 

3.1. Local logical disjunction double-quantitative rough set model 

Definition 3.1. Let ( U, R ) be an approximation space, the local grade upper and lower approximations of X with respect to

R are defined as: 

LR k (X ) = ∪{ [ x ] R : | [ x ] R ∩ X| > k, x ∈ X} = { x ∈ U 0 : | [ x ] R | − | [ x ] R ∩ X| ≤ k, U 0 = ∪{ [ x ] R : x ∈ X}} ; 
LR k (X ) = { x ∈ X : | [ x ] R | − | [ x ] R ∩ X| ≤ k } . 
Based on the two approximations LR k and LR k , a new local rough set model, namely local grade rough sets (LGRS) can

be obtained, which can be denoted by (U, LR k , LR k ) . 

By analyzing the above Definition 3.1 , we find that for any k ≥ 1(k ∈ N ) , we have LR k (X ) ⊆ LR 0 (X ) = { x ∈ U 0 : | [ x ] R ∩ X| >
0 } and LR k (X ) ⊇ LR 0 (X ) = { x ∈ X : | [ x ] R | − | [ x ] R ∩ X| ≤ 0 } . When k = 0 , we have LR k (X ) = R (X ) and LR k (X ) = R (X ) . Therefore,

the local graded rough set (LGRS) model is a generalization of the Pawlak rough set model. More importantly, with the

increase of k , the upper approximation will become smaller and the lower approximation set will become larger. In other

words, the boundary region of the LGRS model is smaller than that of the Pawlak rough set, which can provide more

knowledge from the boundary region for decision making. 

In the universe U , there are always such objects that can not be distinguished within the probability threshold (grade

threshold), but they can be distinguished by using grade information (probability information). In order to identify such

objects to the greatest extent, this paper studies a logical disjunction double-quantitative model in the local idea when

people are optimistic about fault tolerance. Of course, people can study different logical combination or crossed combination

models according to their own needs. For example, when people can accept certain fault tolerance capabilities, but they want

the information of each equivalence class containing concepts to be as valuable as possible in both quantity and quality,
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they may consider logical and double-quantitative models. Based on the completeness of double-quantitative information

on the description of approximation spaces and the computational efficiency of local models in large data sets, other local

double-quantitative combination models are a promising research direction. This paper only studies the logical disjunction

combination model based on the uniqueness and complementarity of relative and absolute quantitative information. 

Based on the simultaneous consideration of double-quantitative information and decision risk in the decision-making

process, a Local Logical Disjunction Double-quantitative Rough Set model (LLDDRS) is proposed on the basis of the local

rough set (LRS) and the local graded rough set (LGRS), which can describe a concept from two aspects of relative and

absolute information. The details are given as follows: 

Definition 3.2. Let ( U, R ) be an approximation space, the local logical disjunction double-quantitative upper and lower ap-

proximations of X with respect to R are defined as: 

LR (α,β) ∨ k (X ) = ∪{ [ x ] R : P (X| [ x ] R ) > β or | [ x ] R ∩ X| > k, x ∈ X} 
= { x ∈ U 0 : P (X| [ x ] R ) > β or | [ x ] R ∩ X| > k, U 0 = ∪{ [ x ] R : x ∈ X}} ; 
LR (α,β) ∨ k (X ) = { x ∈ X : P (X| [ x ] R ) ≥ α or | [ x ] R | − | [ x ] R ∩ X| ≤ k } . 

In LLDDRS model, LR (α,β) ∨ k (X ) is the union of the equivalence classes of objects in X whose probability (inclusion degree)

with respect to X exceeds β or whose internal grade with respect to X exceeds k ; LR ( α, β) ∨ k ( X ) is the object set where the

probability (inclusion degree) of each object belonging to X is not less than α or the external grade of the object belonging

to X is not more than k . 

Based on the two approximations LR (α,β) ∨ k and LR ( α, β) ∨ k , a new local rough set model can be obtained, namely

Local Logical Disjunction Double-quantitative Rough Sets (LLDDRS). The new rough set model can be denoted by

(U, LR (α,β) ∨ k , LR (α,β) ∨ k ) . The positive region, negative region, upper boundary region, lower boundary region and boundary

region of subset X with respect to R in the (U, LR (α,β) ∨ k , LR (α,β) ∨ k ) model are defined as: 

posLR ∨ (X ) = LR (α,β) ∨ k (X ) ∩ LR (α,β) ∨ k (X ) ; 

negLR ∨ (X ) = ( LR (α,β) ∨ k (X ) ∪ LR (α,β) ∨ k (X )) C ; 

UbnLR ∨ (X ) = LR (α,β) ∨ k (X ) − LR (α,β) ∨ k (X ) ; 

LbnLR ∨ (X ) = LR (α,β) ∨ k (X ) − LR (α,β) ∨ k (X ) ; 

bnLR ∨ (X ) = UbnLR (α,β) ∨ k (X ) ∪ LbnLR (α,β) ∨ k (X ) . 

Obviously, the positive region, negative region, upper boundary region, lower boundary region can form a partition

of the universe, namely U = posLR ∨ (X ) ∪ negLR ∨ (X ) ∪ UbnLR ∨ (X ) ∪ LbnLR ∨ (X ) . We can find that the upper approximation

LR (α,β) ∨ k (X ) is the union of the positive region posLR ∨ ( X ) and the upper boundary region UbnLR ∨ ( X ), and the lower approx-

imation LR ( α, β) ∨ k ( X ) is the union of the positive region posLR ∨ ( X ) and the lower boundary region LbnLR ∨ ( X ). 

Next, we define the following measures to evaluate the performance of the LLDDRS model and the importance of the

double-quantitative information. 

Definition 3.3. Let ( U, C ∪ D ) be a decision table, where C is a condition attribute set and D is a decision attribute set. The

approximation accuracy of C with respect to D in the LLDDRS model is defined as 

ρ∨ (C, D ) = 

∑ {| LR (α,β) ∨ k (Y i ) | : Y i ∈ U/R D } 
∑ {| Y i | : Y i ∈ U/R D } where U/R D = { Y 1 , Y 2 , . . . , Y s } is a partition of the universe U under the equivalence re-

lation generated by D and i, j ∈ { 1 , 2 , . . . , s } . 
The unique contribution rates of relative, absolute quantitative information to concept approximation and the shared

contribution rate of relative and absolute quantitative information to concept approximation are defined as 

C p = 

∑ {| LR (α,β) ∨ k (Y i ) −LR k (Y i ) | : Y i ∈ U/R D } / | U| 
ρ∨ (C,D ) 

, C g = 

∑ {| LR (α,β) ∨ k (Y i ) −LR (α,β) (Y i ) | : Y i ∈ U/R D } / | U| 
ρ∨ (C,D ) 

, C p∨ g = 1 − C p − C g , respectively. 

The unique contribution rate of relative quantitative information C p is characterized by the percentage of objects that can

only be depicted by relative quantitative information in concept approximation; the unique contribution rate of absolute

quantitative information C g is characterized by the percentage of objects that can only be depicted by absolute quantitative

information in concept approximation; and the shared contribution rate of relative and absolute quantitative information

C p ∨ g is characterized by the percentage of objects that can be depicted either by relative or absolute quantitative information

in concept approximation. 

According to Definition 3.2 and the concepts of rough regions, we find that the positive, negative, upper boundary and

lower boundary regions of the LLDDRS model can be known by calculating the upper and lower approximations, and the

upper and lower approximation sets can be calculated by the positive, upper boundary and lower boundary regions. Next,

we first design Algorithm 1 to compute the local logical disjunction double-quantitative upper and lower approximations of

a target concept X . 

In Algorithm 1 , steps 1–3 calculate the equivalence class of any object x in the target concept X , the cardinality of sets

[ x ] R and [ x ] R ∩ X and the conditional probability of the equivalence class [ x ] R with respect to the concept X , and its time

complexity is O(| X|| U| ) . Step 4 initializes the upper and lower approximations of X , and its time complexity is constant.

Steps 5–12 calculate the upper and lower approximations LR (α,β) ∨ k (X ) , LR ( α, β) ∨ k ( X ), and the time complexity is O(| X| ) . At
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Algorithm 1: Upper and lower approximations of a target concept in the LLDDRS model. 

Input: An approximation space (U, R ) , a target concept X , decision risk parameters α, β and grade parameter k 

Output: LR (α,β) ∨ k (X ) , LR (α,β) ∨ k (X ) 

1: for each x ∈ X do 

2: Compute [ x ] R , | [ x ] R | , | [ x ] R ∩ X| and P (X| [ x ] R ) of x // [ x ] R is the equivalence class of x with respect to R 

3: end for 

4: Initialize LR (α,β) ∨ k (X ) ← ∅ , LR (α,β) ∨ k (X ) ← ∅ 
5: for each x ∈ X do 

6: if P (X| [ x ] R ) > β or | [ x ] R ∩ X| > k then 

7: LR (α,β) ∨ k (X ) = LR (α,β) ∨ k (X ) ∪ [ x ] R 
8: end if 

9: if P (X| [ x ] R ) ≥ α or | [ x ] R | − | [ x ] R ∩ X| ≤ k then 

10: LR (α,β) ∨ k (X ) = LR (α,β) ∨ k (X ) ∪ x 

11: end if 

12: end for 

13: return LR (α,β) ∨ k (X ) , LR (α,β) ∨ k (X ) 

 

 

 

 

 

 

 

 

 

last, return the upper and lower approximations of the target concept X . The time complexity of Algorithm 1 is equal to

O(| X|| U| ) . 
When calculating the upper and lower approximations, the time complexities of the LLDDRS model and the LRS model

are the same. However, the time complexity of upper and lower approximations in the LLDDRS model is less or even far

less than that in the corresponding global logical disjunction double-quantitative rough set (GLDDRS) ( O(| U| 2 ) ). Therefore,

the proposed LLDDRS model is efficient in computing approximation sets in large data sets. 

3.2. The important properties of LLDDRS 

Theorem 3.1. Let ( U, R ) be an approximation space, for any subset X ⊆ U, the following conclusions are obtained: 

LR (α,β) ∨ k (X ) = LR (α,β) (X ) ∪ LR k (X ) ; 

LR (α,β) ∨ k (X ) = LR (α,β) (X ) ∪ LR k (X ) . 

Proof: It can directly be proved by Definitions 3.1 and 3.2 . 

According to Theorem 3.1 , the upper (lower) approximation of the LLDDRS model is the union of the upper (lower)

approximations of the LRS and LGRS models. 

Theorem 3.2. Let ( U, R ) be an approximation space, for any subset X ⊆ U, the following conclusions are obtained: 

(1)For ∀ X ⊆ U, there is LR ( α, β) ∨ k ( X ) ⊆ X; 

(2)If β ∈ [0, min { P ( X |[ x ] R ): x ∈ X }] or k ≤ min {|[ x ] R ∩ X |: x ∈ X }, then X ⊆ LR (α,β) ∨ k (X ) ; 

(3)Let β1 , β2 , α1 , α2 ∈ [0, 1] and β1 < β2 , α1 < α2 , there are 

LR (α,β1 ) ∨ k (X ) ⊇ LR (α,β2 ) ∨ k (X ) , LR (α1 ,β) ∨ k (X ) ⊇ LR (α2 ,β) ∨ k (X ) ; 

(4)Let k 1 , k 2 ∈ N and k 1 < k 2 , there are LR (α,β) ∨ k 1 (X ) ⊇ LR (α,β) ∨ k 2 (X ) and LR (α,β) ∨ k 1 (X ) ⊆ LR (α,β) ∨ k 2 (X ) ; 

(5) LR (α,β) ∨ k (X ) ⊇ LR (α,β) (X ) , LR ( α, β) ∨ k ( X ) ⊇LR ( α, β) ( X ) ; LR (α,β) ∨ k (X ) ⊇ LR k (X ) , LR ( α, β) ∨ k ( X ) ⊇LR k ( X ) ; 

(6) LR (α,β) ∨ k (X ) ⊆ R (X ) , LR ( α, β) ∨ k ( X ) ⊇R ( X ) ; 

(7) LR (1 , 0) ∨ k (X ) = R (X ) , LR (1 , 0) ∨ k (X ) = LR k (X ) ⊇ R (X ) ; LR (α,β) ∨ 0 (X ) = R (X ) , LR (α,β) ∨ 0 (X ) = LR (α,β) (X ) ⊇ R (X ) ; 

(8) LR (1 , 0) ∨ 0 (X ) = R (X ) , LR (1 , 0) ∨ 0 (X ) = R (X ) . 

Proof: (1) It can directly be proved by the definition of lower approximation in Definition 3.2 . 

(2) When β ∈ [0, min { P ( X |[ x ] R ): x ∈ X }], for any object x in the concept X , we have P ( X |[ x ] R ) ≥β . Then we obtain

x ∈ LR (α,β) ∨ k (X ) . When k ≤ min {|[ x ] R ∩ X |: x ∈ X }, for any object x in the concept X , we have |[ x ] R ∩ X | > k , then there is

x ∈ LR (α,β) ∨ k (X ) . All in all, in any case, the conclusion X ⊆ LR (α,β) ∨ k (X ) is true. 

(3) When α1 < α2 and β1 < β2 , for any k ∈ N , we have LR (α2 ,β) (X ) ⊆ LR (α1 ,β) (X ) and LR (α,β2 ) 
(X ) ⊆ LR (α,β1 ) 

(X ) . According

to Theorem 3.1 , the conclusions LR (α,β1 ) ∨ k (X ) ⊇ LR (α,β2 ) ∨ k (X ) and LR (α1 ,β) ∨ k (X ) ⊇ LR (α2 ,β) ∨ k (X ) are true. 

(4) When k 1 < k 2 , we have LR k 2 (X ) ⊆ LR k 1 (X ) and LR k 1 (X ) ⊆ LR k 2 (X ) . For any X ⊆ U and any α, β ∈ [0, 1], according to

Theorem 3.1 , we can get LR (α,β) ∨ k 1 (X ) ⊇ LR (α,β) ∨ k 2 (X ) and LR (α,β) ∨ k 1 (X ) ⊆ LR (α,β) ∨ k 2 (X ) . 

(5) Equations can directly be proved by Theorem 3.1 . 
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(6) When k > 0, for any X ⊆ U , we have LR k (X ) ⊆ LR 0 (X ) and LR k ( X ) ⊇LR 0 ( X ). And when k = 0 , we have LR 0 (X ) = R (X ) and

LR 0 (X ) = R (X ) . Therefore, according to Theorem 3.1 , we have LR (α,β) ∨ k (X ) ⊆ LR (α,β) ∨ 0 (X ) and LR ( α, β) ∨ k ( X ) ⊇LR ( α, β) ∨ 0 ( X ). Be-

cause LR (α,β) ∨ 0 (X ) = LR (α,β) (X ) ∪ R (X ) and LR (α,β) (X ) ⊆ LR (α, 0) (X ) = R (X ) , we have the conclusion LR (α,β) ∨ 0 (X ) = R (X ) . In

addition, because LR (α,β) ∨ 0 (X ) = LR (α,β) (X ) ∪ R (X ) and R (X ) = LR (1 ,β) (X ) ⊆ LR (α,β) (X ) , we have LR (α,β) ∨ 0 (X ) = LR (α,β) (X ) ⊇
X . Therefore, the conclusions LR (α,β) ∨ k (X ) ⊆ R (X ) and LR ( α, β) ∨ k ( X ) ⊇R ( X ) are true. 

(7) For any X ⊆ U , we have LR (1 , 0) ∨ k (X ) = R (X ) ∪ LR k (X ) . For any k ∈ N , LR k (X ) ⊆ LR 0 (X ) = R (X ) . Therefore, the conclusion

LR (1 , 0) ∨ k (X ) = R (X ) is true. Similarly, for any X ⊆ U , we have LR (1 , 0) ∨ k (X ) = R (X ) ∪ LR k (X ) = LR 0 (X ) ∪ LR k (X ) = LR k (X ) . There-

fore, the conclusion LR (1 , 0) ∨ k (X ) = LR k (X ) ⊇ R (X ) is true. For any X ⊆ U , we have LR (α,β) ∨ 0 (X ) = LR (α,β) (X ) ∪ R (X ) . Because

LR (α,β) (X ) ⊆ LR (α, 0) (X ) = R (X ) , so we can get LR (α,β) ∨ 0 (X ) = R (X ) . For any X ⊆ U , we have LR (α,β) ∨ 0 (X ) = LR (α,β) (X ) ∪ R (X ) .

Because R (X ) = LR (1 ,β) (X ) ⊆ LR (α,β) (X ) , so we can get LR (α,β) ∨ 0 (X ) = LR (α,β) (X ) ⊇ R (X ) . 

(8)When α = 1 , β = 0 , k = 0 , we have LR (α,β) ∨ k (X ) = { x ∈ U : [ x ] R ∩ X � = ∅} and LR (α,β) ∨ k (X ) = { x ∈ U : [ x ] R ⊆ X} . There-

fore, the conclusions LR (1 , 0) ∨ 0 (X ) = R (X ) and LR (1 , 0) ∨ 0 (X ) = R (X ) are true. 

Based on the above conclusions (6) and (8), we find that the Local Logical Disjunction Double-quantitative Rough Set

model is a generalization model of the Pawlak rough sets, and the upper approximation of the LLDDRS model becomes

smaller and its lower approximation becomes larger due to the introduction of parameters α, β , k . So the LLDDRS model

can provide more valuable information for decision making. In particular, when conditions α = 1 , β = 0 , k = 0 are satisfied,

the LLDDRS model degenerates to the Pawlak rough set. 

3.3. The rough regions of the LLDDRS model 

After simplifying Definition 3.2 , we get the following expressions of upper and lower approximations 

LR (α,β) ∨ k (X ) = { x ∈ U 0 : | [ x ] R ∩ X| > min (β| [ x ] R | , k ) , U 0 = ∪{ [ x ] R : x ∈ X}} ; 
LR (α,β) ∨ k (X ) = { x ∈ X : | [ x ] R ∩ X| ≥ min (α| [ x ] R | , | [ x ] R | − k ) } . 
From these two equations, we can see that different parameter values of α, β (0 ≤β < α ≤ 1) will lead to different upper

and lower approximation sets. The lower approximation set describes objects within acceptable tolerance that definitely

belong to a target concept. Considering the acceptability level of people for fault tolerance in real life, we set the threshold

parameter α of the lower approximation to be greater than 1/2. The approximation sets and rough regions of the LLDDRS

model are analyzed below. 

Firstly, we analyze the first case 1/2 ≤β < α ≤ 1. 

When 1/2 ≤β < α ≤ 1, we have α + β > 1 . We can get inequality k/β < k/ (1 − α) . If |[ x ] R | < k / β , then the upper approx-

imation is LR (α,β) ∨ k (X ) = { x ∈ U 0 : | [ x ] R ∩ X| > β| [ x ] R | , U 0 = ∪{ [ x ] R : x ∈ X}} . The lower approximation can be obtained by in-

equality | [ x ] R | < k/β < k/ (1 − α) , namely LR (α,β) ∨ k (X ) = { x ∈ X : | [ x ] R ∩ X| ≥ | [ x ] R | − k } . If |[ x ] R | ≥ k / β , the upper approxima-

tion is LR (α,β) ∨ k (X ) = { x ∈ U 0 : | [ x ] R ∩ X| > k, U 0 = ∪{ [ x ] R : x ∈ X}} . The lower approximation needs to be further compared

with values α|[ x ] R | and | [ x ] R | − k . Under the condition k/β ≤ | [ x ] R | < k/ (1 − α) , the lower approximation is LR (α,β) ∨ k (X ) =
{ x ∈ X : | [ x ] R ∩ X| ≥ | [ x ] R | − k } ; under the condition | [ x ] R | ≥ k/ (1 − α) , the lower approximation is LR (α,β) ∨ k (X ) = { x ∈ X :

| [ x ] R ∩ X| ≥ α| [ x ] R |} . Therefore, we can get the following expressions of upper and lower approximations in the case of

1/2 ≤β < α ≤ 1 ( U 0 = ∪{ [ x ] R : x ∈ X} ), which are 

• If |[ x ] R | < k / β , then LR ∨ (X ) = { x ∈ U 0 : | [ x ] R ∩ X| > β| [ x ] R |} , LR ∨ (X ) = { x ∈ X : | [ x ] R ∩ X| ≥ | [ x ] R | − k } ; 
• If k/β ≤ | [ x ] R | < k/ (1 − α) , then LR ∨ (X ) = { x ∈ U 0 : | [ x ] R ∩ X| > k } , LR ∨ (X ) = { x ∈ X : | [ x ] R ∩ X| ≥ | [ x ] R | − k } ; 
• If | [ x ] R | ≥ k/ (1 − α) , then LR ∨ (X ) = { x ∈ U 0 : | [ x ] R ∩ X| > k } , LR ∨ (X ) = { x ∈ X : | [ x ] R ∩ X| ≥ α| [ x ] R |} ; 

Rough regions in the case of 1/2 ≤β < α ≤ 1 can be obtained based on upper and lower approximation sets and the

inclusion relation X ⊆ U 0 ⊆ U . 

If |[ x ] R | ∈ (0, k / β), then we have | [ x ] R | − k < β| [ x ] R | ( k/β < k/ (1 − β) ). We can obtain the following conclusions by the

intersection, union and complement operations of sets: 

posLR ∨ (X ) = LR ∨ (X ) ∩ LR (∨ (X ) = { x ∈ X : | [ x ] R ∩ X| > β| [ x ] R |} ; 
negLR ∨ (X ) = ( LR ∨ (X ) ∪ LR (∨ (X )) C = { x ∈ U 0 − X : | [ x ] R ∩ X| ≤ β| [ x ] R |} ∪ { x ∈ X : | [ x ] R ∩ X| < | [ x ] R | − k } ∪ { U − U 0 } ; 
Ubn ∨ (X ) = LR (∨ (X ) − LR ∨ (X ) = { x ∈ U 0 − X : | [ x ] R ∩ X| > β| [ x ] R |} ; 
Lbn ∨ (X ) = LR ∨ (X ) − LR (∨ (X ) = { x ∈ X : | [ x ] R | − k ≤ | [ x ] R ∩ X| ≤ β| [ x ] R |} . 
If [ k/β, k/ (1 − α)) , then we need to compare k and | [ x ] R | − k . When [ k / β , 2 k ), we have | [ x ] R | − k < k . Then rough regions

are posLR ∨ (X ) = { x ∈ X : | [ x ] R ∩ X| > k } ; 
negLR ∨ (X ) = { x ∈ U 0 − X : | [ x ] R ∩ X| ≤ k } ∪ { x ∈ X : | [ x ] R ∩ X| < | [ x ] R | − k } ∪ { U − U 0 } ; 
Ubn ∨ (X ) = { x ∈ U 0 − X : | [ x ] R ∩ X| > k } ; 
Lbn ∨ (X ) = { x ∈ X : | [ x ] R | − k ≤ | [ x ] R ∩ X| ≤ k } . 
When [2 k, k/ (1 − α)) , we have | [ x ] R | − k ≥ k . Then rough regions are 

posLR ∨ (X ) = { x ∈ X : | [ x ] ∩ X| ≥ | [ x ] | − k } ; 
R R 
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negLR ∨ (X ) = { x ∈ U 0 : | [ x ] R ∩ X| ≤ k } ∪ { U − U 0 } ; 
Ubn ∨ (X ) = { x ∈ U 0 − X : | [ x ] R ∩ X| > k } ∪ { x ∈ X : k < | [ x ] R ∩ X| < | [ x ] R | − k } ; 
Lbn ∨ (X ) = ∅ . 
If | [ x ] R | ∈ [ k/ (1 − α) , + ∞ ) , we have α|[ x ] R | > k ( k/ (1 − α) > k/α). The rough regions are 

posLR ∨ (X ) = { x ∈ X : | [ x ] R ∩ X| ≥ α| [ x ] R |} ; 
negLR ∨ (X ) = { x ∈ U 0 : | [ x ] R ∩ X| ≤ k } ∪ { U − U 0 } ; 
Ubn ∨ (X ) = { x ∈ U 0 − X : | [ x ] R ∩ X| > k } ∪ { x ∈ X : k < | [ x ] R ∩ X| < α| [ x ] R |} ; 
Lbn ∨ (X ) = ∅ . 
Consequently, in the case of 1/2 ≤β < α ≤ 1, we have the following conclusions by simplification: 

posLR ∨ (X ) = { x ∈ X : | [ x ] R | ≥ k/ (1 − α) , | [ x ] R ∩ X| ≥ α| [ x ] R |} ∪{ x ∈ X : 2 k ≤ | [ x ] R | < k/ (1 − α) , | [ x ] R ∩ X| ≥ | [ x ] R | − k } 
∪ { x ∈ X : k / β ≤ |[ x ] R | < 2 k , |[ x ] R ∩ X | > k } ∪ { x ∈ X : |[ x ] R | < k / β , |[ x ] R ∩ X | > β|[ x ] R |}; 

negLR ∨ (X ) = { x ∈ U 0 : | [ x ] R | ≥ 2 k, | [ x ] R ∩ X| ≤ k } ∪{ x ∈ (U 0 − X ) : k/β ≤ | [ x ] R | < 2 k, | [ x ] R ∩ X| ≤ k } 
∪{ x ∈ (U 0 − X ) : | [ x ] R | < k/β, | [ x ] R ∩ X| ≤ β| [ x ] R |}∪{ x ∈ X : | [ x ] R | < 2 k, | [ x ] R ∩ X| ≤ | [ x ] R | − k } ∪ { U − U 0 } ; 
UbnLR ∨ (X ) = { x ∈ (U 0 − X ) : | [ x ] R | ≥ k/β, | [ x ] R ∩ X| > k } ∪{ x ∈ (U 0 − X ) : | [ x ] R | < k/β, | [ x ] R ∩ X| > β| [ x ] R |} 
∪{ x ∈ X : | [ x ] R | ≥ k/ (1 − α) , k < | [ x ] R ∩ X| < α| [ x ] R |} 
∪{ x ∈ X : 2 k ≤ | [ x ] R | < k/ (1 − α) , k < | [ x ] R ∩ X| < | [ x ] R | − k } ; 
LbnLR ∨ (X ) = { x ∈ X : k/β ≤ | [ x ] R | < 2 k, | [ x ] R | − k ≤ | [ x ] R ∩ X| ≤ k } 
∪{ x ∈ X : | [ x ] R | < k/β, | [ x ] R | − k ≤ | [ x ] R ∩ X| ≤ β| [ x ] R |} . 
Secondly, we analyze rough regions in the case of 0 ≤β < 1/2 < α ≤ 1, α + β ≥ 1 and the case of 0 ≤β < 1/2 < α ≤ 1, α +

β < 1 by using the similar method. The details are presented as follows: 

In these two cases, we have the same positive region, negative region and lower boundary region expressions, which are

posLR ∨ (X ) = { x ∈ X : | [ x ] R | ≥ k/ (1 − α) , | [ x ] R ∩ X| ≥ α| [ x ] R |} 
∪{ x ∈ X : k/ (1 − β) ≤ | [ x ] R | < k/ (1 − α) , | [ x ] R ∩ X| ≥ | [ x ] R | − k } 
∪{ x ∈ X : | [ x ] R | < k/ (1 − β) , | [ x ] R ∩ X| > β| [ x ] R |} ; 
negLR ∨ (X ) = { x ∈ U 0 : | [ x ] R | ≥ k/β, | [ x ] R ∩ X| ≤ k } 
∪{ x ∈ U 0 : k/ (1 − β) ≤ | [ x ] R | < k/β, | [ x ] R ∩ X| ≤ β| [ x ] R |} 
∪{ x ∈ (U 0 − X ) : | [ x ] R | < k/ (1 − β) , | [ x ] R ∩ X| ≤ β| [ x ] R |} 
∪{ x ∈ X : | [ x ] R | < k/ (1 − β) , | [ x ] R ∩ X| < | [ x ] R | − k } ∪{ U − U 0 } ; 
Lbn ∨ (X ) = { x ∈ X : | [ x ] R | < k/ (1 − β) , | [ x ] R | − k ≤ | [ x ] R ∩ X| ≤ β| [ x ] R |} . 
However there are different expressions for the upper boundary regions under these two cases. In case

0 ≤β < 1/2 < α ≤ 1, α + β < 1 , the upper boundary region is 

Ubn ∨ (X ) = { x ∈ (U 0 − X ) : | [ x ] R | ≥ k/β, | [ x ] R ∩ X| > k } ∪ { x ∈ X : |[ x ] R | ≥ k / β , k < |[ x ] R ∩ X | < α|[ x ] R |} 

∪{ x ∈ (U 0 − X ) : | [ x ] R | < k/β, | [ x ] R ∩ X| > β| [ x ] R |} 
∪{ x ∈ X : k/ (1 − α) ≤ | [ x ] R | < k/β, β| [ x ] R | < | [ x ] R ∩ X| < α| [ x ] R |} 
∪{ x ∈ X : k/ (1 − β) ≤ | [ x ] R | < k/ (1 − α) , β| [ x ] R | < | [ x ] R ∩ X| < | [ x ] R | − k } . 
In case 0 ≤β < 1/2 < α ≤ 1, α + β ≥ 1 , the upper boundary region is 

Ubn ∨ (X ) = { x ∈ (U 0 − X ) : | [ x ] R | ≥ k/β, | [ x ] R ∩ X| > k } ∪{ x ∈ (U 0 − X ) : | [ x ] R | < k/β, | [ x ] R ∩ X| > β| [ x ] R |} 
∪{ x ∈ X : | [ x ] R | ≥ k/ (1 − α) , k < | [ x ] R ∩ X| < α| [ x ] R |} 
∪{ x ∈ X : k/β ≤ | [ x ] R | < k/ (1 − α) , k < | [ x ] R ∩ X| < | [ x ] R | − k } 
∪{ x ∈ X : k/ (1 − β) ≤ | [ x ] R | < k/β, β| [ x ] R | < | [ x ] R ∩ X| < | [ x ] R | − k } . 
In this paper, two methods for calculating rough regions are presented. One method is based on the upper and lower

approximations, and the other is to directly use the above rough region expressions. When people focus only on one or some

rough regions, the second method is more practical. In order to facilitate the solution, we design Algorithm 2 to calculate

the related regions of the LLDDRS model. 

In Algorithm 2 , steps 1–3 calculate the equivalence class of any object x in the target concept X and the cardinality of sets

[ x ] R and [ x ] R ∩ X , and its time complexity is O(| X|| U| ) . Step 4 initializes positive region posLR ∨ ( X ), negative region negLR ∨ ( X ),

lower boundary region LbnLR ∨ ( X ) as empty set and U 0 as the union of equivalence classes of all elements in X , and its time

complexity is constant. Steps 5–32 calculate positive, negative, lower boundary and upper boundary regions and boundary

regions under two cases 0 ≤β < 1/2 < α ≤ 1 and 1/2 ≤β < α ≤ 1 in the LLDDRS model, and the time complexity is O(| U 0 | ) .
At last, return rough regions of the target concept X . The time complexity of Algorithm 2 is equal to O(| X|| U| ) . 

3.4. The decision rules in the LLDDRS model 

Based on the above rough regions of the LLDDRS model, we can get the corresponding decision rules. For example, when

β ≥ 1/2, we obtain the following positive region and negative region decision rules 

( P ∨ ) If x ∈ X, | [ x ] R | ≥ k/ (1 − α) , | [ x ] R ∩ X| ≥ α| [ x ] R | , then accept 

( P ∨ ) If x ∈ X, 2 k ≤ | [ x ] R | < k/ (1 − α) , | [ x ] R ∩ X| ≥ | [ x ] R | − k, then accept 

( P ∨ ) If x ∈ X, k / β ≤ |[ x ] R | < 2 k , |[ x ] R ∩ X | > k , then accept 

( P ∨ ) If x ∈ X , |[ x ] R | < k / β , |[ x ] R ∩ X | > β|[ x ] R |, then accept 

( N 

∨ ) If x ∈ (U − U 0 ) , then reject 

( N 

∨ ) If x ∈ U , |[ x ] | ≥ 2 k , |[ x ] ∩ X | ≤ k , then reject 
0 R R 
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Algorithm 2: Rough regions of a target concept in the LLDDRS model. 

Input: An approximation space (U, R ) , a target concept X , decision risk parameters α, β and grade parameter k 

Output: posLR ∨ (X ) , negLR ∨ (X ) , LbnLR ∨ (X ) , UbnLR ∨ (X ) , bnLR ∨ (X ) 

1: for each x ∈ X do 

2: Compute [ x ] R , | [ x ] R | and | [ x ] R ∩ X| of x // [ x ] R is the equivalence class of x with respect to R 

3: end for 

4: Initialize posLR ∨ (X ) ← ∅ , negLR ∨ (X ) ← ∅ , LbnLR ∨ (X ) ← ∅ , U 0 ← ∪{ [ x ] R : x ∈ X} 

5: if beta < 1 / 2 then 

6: for each x ∈ U 0 do 

7: posLR ∨ (X ) ← posLR ∨ (X ) ∪ { x : | [ x ] R | ≥ k/ (1 − α) , | [ x ] R ∩ X| ≥ α| [ x ] R | , x ∈ X} 
8: posLR ∨ (X ) ← posLR ∨ (X ) ∪ { x : | [ x ] R | < k/ (1 − β) , | [ x ] R ∩ X| > β| [ x ] R | , x ∈ X} 
9: posLR ∨ (X ) ← posLR ∨ (X ) ∪ { x : k/ (1 − β) ≤ | [ x ] R | < k/ (1 − α) , | [ x ] R ∩ X| ≥ | [ x ] R | − k, x ∈ X} 

10: negLR ∨ (X ) ← negLR ∨ (X ) ∪ { x : | [ x ] R | ≥ k/β, | [ x ] R ∩ X| ≤ k } 
11: negLR ∨ (X ) ← negLR ∨ (X ) ∪ { x : | [ x ] R | < k/ (1 − β) , | [ x ] R ∩ X| < | [ x ] R | − k, x ∈ X} 
12: negLR ∨ (X ) ← negLR ∨ (X ) ∪ { x : k/ (1 − β) ≤ | [ x ] R | < k/β, | [ x ] R ∩ X| ≤ β| [ x ] R |} 
13: negLR ∨ (X ) ← negLR ∨ (X ) ∪ { x : | [ x ] R | < k/ (1 − β) , | [ x ] R ∩ X| ≤ β| [ x ] R | , x ∈ (U 0 − X ) } 
14: LbnLR ∨ (X ) ← LbnLR ∨ (X ) ∪ { x : | [ x ] R | < k/ (1 − β) , | [ x ] R | − k ≤ | [ x ] R ∩ X| ≤ β| [ x ] R | , x ∈ X} 
15: end for 

16: else 

17: for each x ∈ U 0 do 

18: posLR ∨ (X ) ← posLR ∨ (X ) ∪ { x : | [ x ] R | ≥ k/ (1 − α) , | [ x ] R ∩ X| ≥ α| [ x ] R | , x ∈ X} 
19: posLR ∨ (X ) ← posLR ∨ (X ) ∪ { x : k/β ≤ | [ x ] R | < 2 k, | [ x ] R ∩ X| > k, x ∈ X} 
20: posLR ∨ (X ) ← posLR ∨ (X ) ∪ { x : 2 k ≤ | [ x ] R | < k/ (1 − α) , | [ x ] R ∩ X| ≥ | [ x ] R | − k, x ∈ X} 
21: posLR ∨ (X ) ← posLR ∨ (X ) ∪ { x : | [ x ] R | < k/β, | [ x ] R ∩ X| > β| [ x ] R | , x ∈ X} 
22: negLR ∨ (X ) ← negLR ∨ (X ) ∪ { x : | [ x ] R | ≥ 2 k, | [ x ] R ∩ X| ≤ k } 
23: negLR ∨ (X ) ← negLR ∨ (X ) ∪ { x : k/β ≤ | [ x ] R | < 2 k, | [ x ] R ∩ X| ≤ k, x ∈ (U 0 − X ) } 
24: negLR ∨ (X ) ← negLR ∨ (X ) ∪ { x : | [ x ] R | < k/β, | [ x ] R ∩ X| ≤ β| [ x ] R | , x ∈ (U 0 − X ) } 
25: negLR ∨ (X ) ← negLR ∨ (X ) ∪ { x : | [ x ] R | < 2 k, | [ x ] R ∩ X| ≤ | [ x ] R | − k, x ∈ X} 
26: LbnLR ∨ (X ) ← LbnLR ∨ (X ) ∪ { x : k/β ≤ | [ x ] R | < 2 k, | [ x ] R | − k ≤ | [ x ] R ∩ X| ≤ k, x ∈ X} 
27: LbnLR ∨ (X ) ← LbnLR ∨ (X ) ∪ { x : | [ x ] R | < k/β, | [ x ] R | − k ≤ | [ x ] R ∩ X| ≤ β| [ x ] R | , x ∈ X} 
28: end for 

29: end if 

30: negLR ∨ (X ) ← negLR ∨ (X ) ∪ (U − U 0 ) 

31: UbnLR ∨ (X ) ← U − posLR ∨ (X ) − negLR ∨ (X ) − LbnLR ∨ (X ) 

32: bnLR ∨ (X ) ← LbnLR ∨ (X ) ∪ UbnLR ∨ (X ) 

33: return posLR ∨ (X ) , negLR ∨ (X ) , LbnLR ∨ (X ) , UbnLR ∨ (X ) , bnLR ∨ (X ) 

 

 

 

 

 

 

 

 

 

 

( N 

∨ ) If x ∈ (U 0 − X ) , k/β ≤ | [ x ] R | < 2 k, | [ x ] R ∩ X| ≤ k, then reject 

( N 

∨ ) If x ∈ (U 0 − X ) , | [ x ] R | < k/β, | [ x ] R ∩ X| ≤ β| [ x ] R | , then reject 

( N 

∨ ) If x ∈ X, | [ x ] R | < 2 k, | [ x ] R ∩ X| < | [ x ] R | − k, then reject 

When we only focus on the decision rules of one region, this method is very convenient. 

Next, we present all the decision rules in a more understandable way. For objects in the positive and negative regions,

we make acceptance and rejection decisions, respectively. For objects in the upper and lower boundary regions, we need

more information to make definite decisions. In order to reduce the losses caused by incorrect acceptance and incorrect

rejection, we defer decision-making on these objects in boundary regions, namely noncommitment. 

In the case 1/2 ≤β < α ≤ 1, we have the inequality k/β ≤ 2 k < k/ (1 − α) . Considering that the universe U consists of three

parts X , U 0 − X and U − U 0 , we present the following rule information. Details are shown in Table 2 , where N 

+ is a set of

natural numbers. 

In the case 0 ≤β < 1/2 < α ≤ 1 ( α + β ≥ 1 ), we have the inequality k/ (1 − β) < k/β < k/ (1 − α) . Decision rules are shown

in Table 3 . 

In the case 0 ≤β < 1/2 < α ≤ 1 ( α + β < 1 ), we have the inequality k/ (1 − β) < k/ (1 − α) < k/β . Decision rules are shown

in Table 4 . 

3.5. The relationships of the LLDDRS model with other models 

Firstly, we study the relationships between the LLDDRS model and the four models (RS, DTRS, GRS and LRS) proposed in

the preliminaries. Details are shown in Fig. 1 . 

In Fig. 1 , rough sets (RS) lack fault tolerance capabilities because of the strict requirement of the set inclusion relation

between equivalence classes and an approximated concept. In order to enhance the practicability of the RS model, decision-
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Table 2 

The decision rules of LLDDRS model in the case 1/2 ≤β < α ≤ 1. 

Conditions |[ x ] R | |[ x ] R ∩ X | Regions Decisions 

x ∈ X < k / β > β|[ x ] R | posLR ∨ Acceptance 

[ | [ x ] R | − k, β| [ x ] R | ] LbnLR ∨ Noncommitment 

< | [ x ] R | − k negLR ∨ Rejection 

[ k / β , 2 k ) > k posLR ∨ Acceptance 

[ | [ x ] R | − k, k ] LbnLR ∨ Noncommitment 

< | [ x ] R | − k negLR ∨ Rejection 

[2 k, k/ (1 − α)) ≥ | [ x ] R | − k posLR ∨ Acceptance 

(k, | [ x ] R | − k ) UbnLR ∨ Noncommitment 

≤ k negLR ∨ Rejection 

≥ k/ (1 − α) ≥α|[ x ] R | posLR ∨ Acceptance 

( k, α|[ x ] R |) UbnLR ∨ Noncommitment 

≤ k negLR ∨ Rejection 

x ∈ U 0 − X < k / β > β|[ x ] R | UbnLR ∨ Noncommitment 

≤β|[ x ] R | negLR ∨ Rejection 

( k / β , 2 k ) > k UbnLR ∨ Noncommitment 

≤ k negLR ∨ Rejection 

≥ 2 k > k UbnLR ∨ Noncommitment 

≤ k negLR ∨ Rejection 

x ∈ U − U 0 N 

+ N 

+ negLR ∨ Rejection 

Table 3 

The decision rules of LLDDRS in the case 0 ≤β < 1/2 < α ≤ 1, α + β ≥ 1 . 

Conditions |[ x ] R | |[ x ] R ∩ X | Regions Decisions 

x ∈ X < k/ (1 − β) > β|[ x ] R | posLR ∨ Acceptance 

[ | [ x ] R | − k, β| [ x ] R | ] LbnLR ∨ Noncommitment 

< | [ x ] R | − k negLR ∨ Rejection 

[ k/ (1 −
β) , k/β) 

≥ | [ x ] R | − k posLR ∨ Acceptance 

(β| [ x ] R | , | [ x ] R | − k ) UbnLR ∨ Noncommitment 

≤β|[ x ] R | negLR ∨ Rejection 

[ k/β, k/ (1 −
α)) 

≥ | [ x ] R | − k posLR ∨ Acceptance 

(k, | [ x ] R | − k ) UbnLR ∨ Noncommitment 

≤ k negLR ∨ Rejection 

≥ k/ (1 − α) ≥α|[ x ] R | posLR ∨ Acceptance 

( k, α|[ x ] R |) UbnLR ∨ Noncommitment 

≤ k negLR ∨ Rejection 

x ∈ U 0 − X < k / β > β|[ x ] R | UbnLR ∨ Noncommitment 

≤β|[ x ] R | negLR ∨ Rejection 

≥ k / β > k UbnLR ∨ Noncommitment 

≤ k negLR ∨ Rejection 

x ∈ U − U 0 N 

+ N 

+ negLR ∨ Rejection 

Table 4 

The decision rules of LLDDRS in the case 0 ≤β < 1/2 < α ≤ 1, α + β < 1 . 

Conditions |[ x ] R | |[ x ] R ∩ X | Regions Decisions 

x ∈ X < k/ (1 − β) > β|[ x ] R | posLR ∨ Acceptance 

[ | [ x ] R | − k, β| [ x ] R | ] LbnLR ∨ Noncommitment 

< | [ x ] R | − k negLR ∨ Rejection 

[ k/ (1 −
β) , k/ (1 − α)) 

≥ | [ x ] R | − k posLR ∨ Acceptance 

(β| [ x ] R | , | [ x ] R | − k ) UbnLR ∨ Noncommitment 

≤β|[ x ] R | negLR ∨ Rejection 

[ k/ (1 −
α) , k/β) 

α|[ x ] R | posLR ∨ Acceptance 

( β|[ x ] R |, α|[ x ] R |) UbnLR ∨ Noncommitment 

≤β|[ x ] R | negLR ∨ Rejection 

≥ k / β ≥α|[ x ] R | posLR ∨ Acceptance 

( k, α|[ x ] R |) UbnLR ∨ Noncommitment 

≤ k negLR ∨ Rejection 

x ∈ U 0 − X < k / β > β|[ x ] R | UbnLR ∨ Noncommitment 

≤β|[ x ] R | negLR ∨ Rejection 

≥ k / β > k UbnLR ∨ Noncommitment 

≤ k negLR ∨ Rejection 

x ∈ U − U 0 N 

+ N 

+ negLR ∨ Rejection 
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Fig. 1. The relationships of the LLDDRS, RS, DTRS, GRS and LRS models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

theoretic rough sets (DTRS) and graded rough sets (GRS) are two quantitative generalizations of the qualitative RS. The DTRS

model quantifies the set inclusion relation based on conditional probability in the approximate operators, which is a repre-

sentative model considering relative quantitative information between equivalence classes and an approximated concept and 

has certain fault tolerance capabilities. The GRS model quantifies the set inclusion relation from external grade and internal

grade based on the idea of graded modal logics, which is a representative model considering absolute quantitative informa-

tion between equivalence classes and a concept and has certain fault tolerance capabilities. When decision risk parameters

α = 1 , β = 0 and grade parameter k = 0 , both DTRS and GRS degenerate into RS. These models in first gray box are called

global rough sets. 

Local rough sets (LRS) can do effectively and efficiently rough data analysis in large data sets by deeply mining the

essence of approximation concepts of rough set model. The LRS model is an extension and innovation of RS, which has

certain fault tolerance capabilities. When α = 1 , β = 0 , LRS degenerates into RS. Considering the relative and absolute quan-

titative information are two distinctive objective sides that describe approximation spaces and none can be neglected, we

first propose local graded rough sets (LGRS), then propose logical disjunction double-quantitative rough sets (LLDDRS) based

on relative and absolute quantitative information. The LLDDRS model is computationally efficient in large data sets, which

provides an effective tool for rough data analysis in large data sets. Moreover, the LLDDRS model as the extension and inno-

vation of RS has double fault tolerance capabilities in concept approximation, which can provide more accurate descriptions

of concepts when compared it with LRS. When k = 0 , LGRS degenerates into RS, and when α = 1 , β = 0 , k = 0 , LLDDRS de-

generates into RS. These models in second gray box are called local rough sets. Compared with the corresponding global

models, each local model has computational advantages in large data sets. 

Secondly, from the perspective of computational efficiency, we present the connections of the proposed LLDDRS model

and some incremental learning models. The common points of the following models and the LLDDRS model are that the

basic rough set models studied need to be improved to adapt to complex data changes such as large-scale data, dynamic

data, and these rough data analysis methods cannot satisfy the requirements of efficient computation in large data sets.

Therefore, scholars propose efficient rough approximation updating or attribute reduction methods for data mining in large

or dynamic data sets. 

• Jing et al. studied reduction approaches based on knowledge granularity in large-scale decision systems with the change

of objects [9] and with the simultaneous change of objects and attributes [10] . Their focus is to propose an efficient

attribute reduction method based on knowledge granularity for dynamic large data sets. We focus more on developing

an efficient knowledge discovery tool to provide more accurate approximation of concepts based on double-quantitative

information. 
• Luo et al. [18] studied systematically the updating processes of condition granules, decision granules and dominance-

based rough approximations with the cut refinement and coarsening of attribute value taxonomies in hierarchical multi-

criteria decision systems. Their focus is to propose efficient concept approximation methods for hierarchical multicriteria

decision systems with dynamic change of attribute values. Our focus is to propose efficient concept approximation and

decision methods for large data sets. 
• Yang et al. [39] proposed two efficient incremental algorithms for fuzzy rough set based feature selection in large-scale

real-valued data sets from the viewpoint of the successive arrival of sample subsets. Their focus is on feature selection

methods for efficient processing of large-scale real-valued data sets. The emphasis of this paper is to propose efficient

concept description and decision methods in large data sets. 
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Table 5 

Initial medical data. 

U a 1 a 2 d U a 1 a 2 d U a 1 a 2 d 

x 1 0 0 0 x 13 0 0 0 x 25 0 2 0 

x 2 1 1 0 x 14 2 1 1 x 26 2 2 1 

x 3 0 2 1 x 15 0 1 1 x 27 1 1 0 

x 4 2 1 0 x 16 1 1 0 x 28 2 0 1 

x 5 1 0 1 x 17 0 2 0 x 29 2 1 1 

x 6 2 2 1 x 18 2 1 1 x 30 0 0 0 

x 7 0 0 0 x 19 0 0 0 x 31 1 2 0 

x 8 1 2 0 x 20 1 2 1 x 32 0 1 0 

x 9 2 2 1 x 21 2 0 1 x 33 2 1 1 

x 10 1 1 1 x 22 0 0 0 x 34 1 1 1 

x 11 1 2 1 x 23 2 1 0 x 35 0 0 0 

x 12 2 0 0 x 24 1 2 1 x 36 2 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Yang et al. proposed the general model and multilevel incremental mechanisms and algorithms of sequential three-way

decisions [40] and developed the methods for dynamic updating three-way regions in multilevel variations of data [41] .

Their focuses are to provide a cost-effective decision method from the perspective of multiple granular structures for

complex problem solving and propose a unified framework for incrementally updating three-way probabilistic regions,

respectively. Our focus is to propose effective and efficient concept approximation and decision-making methods based

on double-quantitative information and local rough sets for large data sets. 

Finally, from the perspective of quantitative completeness extensions, we analyze the relationships between some double-

quantitative rough set models. 

• Yao and Deng [34] proposed a framework of quantitative rough sets encompassing both probabilistic and non-

probabilistic based on subsethood measures, and established some relationships between these models based on different

classes of subsethood measures from a theoretical point of view. Their focus is to put forward a more general framework

of quantitative global rough sets. We mainly focus on the computational efficiency of the double quantification model in

large data sets. 
• Zhang et al. studied systematically two specific double-quantitative rough set models based on the crossed combinations

of the approximations in the variable precision rough sets and GRS models [49] , and deeply studied quantitative seman-

tics, complete system and optimal calculation of double-quantification and rough set models in the double-quantitative

approximation space of precision and grade (PG-Approx-Space) [50] . Their focus is to propose powerful tools for ap-

proximation description and knowledge discovery in increasingly complex environments based on double-quantitative

information. Our focus is also to propose such powerful tools for approximation description and knowledge discovery in

large data sets. Meanwhile, we pay special attention to the computational efficiency of the proposed double-quantitative

model. 

Based on the above analyses, the LLDDRS model with strong double fault tolerance capabilities can not only provide a

thorough description of the approximation space but also satisfies the requirement of efficient computation to some extent

in large data sets. 

4. Case study 

Compared with Pawlak rough sets and local rough sets, the feasibility and superiority of the LLDDRS model are illustrated

by a medical example from literature [48] . Let I = { U, A ∪ d, V, f } be a decision information table, where the universe U

is composed of 36 patients. The condition attribute set A = { a 1 , a 2 } represents fever and headache , respectively. And the

decision attribute d represents cold . The detailed statistics are shown in Table 5 , where the attribute values {0, 1, 2} denote

have no such symptom, suffer from the symptom and have the severe symptom , respectively. 

There are 2 decision equivalence classes that can be obtained, which can be denoted by D 1 =
{ x 1 , x 2 , x 4 , x 7 , x 8 , x 12 , x 13 , x 16 , x 17 , x 19 , x 22 , x 23 , x 25 , x 27 , x 30 , x 31 , x 32 , x 35 , x 36 } and D 2 = { x 3 , x 5 , x 6 , x 9 , x 10 , x 11 , x 14 , x 15 , x 18 , x 20 ,

x 21 , x 24 , x 26 , x 28 , x 29 , x 33 , x 34 } . D 1 and D 2 denote not cold and cold , respectively. The conditional equivalence classes and the

intersections about decision classes are shown in Table 6 , where P 1 and P 2 are the conditional probabilities of equivalence

classes about D 1 and D 2 , respectively. 

According to the information in Table 6 , if only the relative quantitative information (namely conditional probability) is

considered, the class x 6 , x 9 , x 26 and the class x 5 are indiscernible in the LRS model. But the cardinalities of intersection of

these two classes about D 2 are completely different. So, x 6 , x 9 , x 26 and x 5 are discernible in the LGRS model. Therefore,

the LRS model has some disadvantages sometimes. Introducing the grade information into the LRS model is helpful to

the approximation and decision of the target concept. In addition, if only the absolute relative quantitative information

(namely the degree of information) is considered, the class equivalence x 11 , x 20 , x 24 and the equivalence class x 6 , x 9 , x 26

are indiscernible in the LGRS model. However, the class equivalence x , x , x and the equivalence class x , x , x are
11 20 24 6 9 26 
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Table 6 

The information of equivalence classes. 

( i, j ) [ x ] R |[ x ] R | [ x ] R ∩ D 1 |[ x ] R ∩ D 1 | P 1 [ x ] R ∩ D 2 |[ x ] R ∩ D 2 | P 2 

(0,0) x 1 , x 7 , x 13 , x 19 , x 22 , x 30 , x 35 7 x 1 , x 7 , x 13 , x 19 , x 22 , x 30 , x 35 7 1 ∅ 0 0 

(0,1) x 15 , x 32 2 x 32 1 1/2 x 15 1 1/2 

(0,2) x 3 , x 17 , x 25 3 x 17 , x 25 2 2/3 x 3 1 1/3 

(1,0) x 5 1 ∅ 0 0 x 5 1 1 

(1,1) x 2 , x 10 , x 16 , x 27 , x 34 5 x 2 , x 16 , x 27 3 3/5 x 10 , x 34 2 2/5 

(1,2) x 8 , x 11 , x 20 , x 24 , x 31 5 x 8 , x 31 2 2/5 x 11 , x 20 , x 24 3 3/5 

(2,0) x 12 , x 21 , x 28 , x 36 4 x 12 , x 36 2 1/2 x 21 , x 28 2 1/2 

(2,1) x 4 , x 14 , x 18 , x 23 , x 29 , x 33 6 x 4 , x 23 2 1/3 x 14 , x 18 , x 29 , x 33 4 2/3 

(2,2) x 6 , x 9 , x 26 3 ∅ 0 0 x 6 , x 9 , x 26 3 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

discernible in the LRS model. That is to say, the LGRS model also has some disadvantages in some circumstances. The LRS

model and the LGRS model are complementary to each other. Therefore, by considering the user’s requirement for the

approximation accuracy of concepts, we propose the LLDDRS model. 

4.1. The elaboration of the LLDDRS model 

In the following, D 2 is selected as the concept to illustrate the proposed local logical double-quantitative rough set theory.

U 2 = ∪{ [ x ] R | x ∈ D 2 } = U − { x 1 , x 7 , x 13 , x 19 , x 22 , x 30 , x 35 } . The decision risk parameters α, β is determined by the decision loss

function given by the experts in the relevant field and grade parameter k is determined by user requirements. In this section,

the parameter k is set to 1. Since rough regions of the LLDDRS model are related to two variables β and α + β, the local

logical disjunction double-quantitative rough set theory is elaborated from four cases. These cases are mutually exclusive.

When the loss function is given, it must belong to one of the four cases. 

Case 1: β < 1 / 2 , α + β = 1 

When loss parameters λPP = 0 , λPN = 14 , λBP = 8 , λBN = 2 , λNP = 11 , λNN = 0 in a loss function, the decision risk param-

eters can be calculated as α = 0 . 6 , β = 0 . 4 . 

According to Definition 3.2 , the upper and lower approximations in the LLDDRS model are 

LR (0 . 6 , 0 . 4) ∨ 1 (D 2 ) = { x 2 , x 4 , x 5 , x 6 , x 8 , x 9 , x 10 , x 11 , x 12 , x 14 , x 15 , x 16 , x 18 , x 20 , x 21 , x 23 , x 24 , x 26 , x 27 , x 28 , x 29 , x 31 , x 32 , x 33 , x 34 , x 36 } , 
LR (0 . 6 , 0 . 4) ∨ 1 (D 2 ) = { x 5 , x 6 , x 9 , x 11 , x 14 , x 15 , x 18 , x 20 , x 24 , x 26 , x 29 , x 33 } . 
And the rough regions of the LLDDRS model can be obtained as follows: 

posLR ∨ (D 2 ) = { x 5 , x 6 , x 9 , x 11 , x 14 , x 15 , x 18 , x 20 , x 24 , x 26 , x 29 , x 33 } ; 
negLR ∨ (D 2 ) = { x 1 , x 3 , x 7 , x 13 , x 17 , x 19 , x 22 , x 25 , x 30 , x 35 } ; 
UbnLR ∨ (D 2 ) = { x 2 , x 4 , x 8 , x 10 , x 12 , x 16 , x 21 , x 23 , x 27 , x 28 , x 31 , x 32 , x 34 , x 36 } ; 
LbnLR ∨ (D 2 ) = ∅ . 
Of course, rough regions of the LLDDRS model can be calculated by logical disjunction decision rules. When α = 0 . 6 ,

β = 0 . 4 , we have k/α = k/ (1 − β) = 5 / 3 , k/β = k/ (1 − α) = 5 / 2 . Patients x 6 , x 9 , x 11 , x 14 , x 18 , x 20 , x 24 , x 26 , x 29 , x 33 have a

cold by the first rule of positive region rules P ∨ ; patient x 15 has a cold by the second rule of P ∨ ; and patient x 5 has a cold

by the third rule of P ∨ . Therefore, patients x 5 , x 6 , x 9 , x 11 , x 14 , x 15 , x 18 , x 20 , x 24 , x 26 , x 29 , x 33 have a cold according to the

positive region rules. In addition, patients x 1 , x 7 , x 13 , x 19 , x 22 , x 30 , x 35 have no cold by the first rule of negative region rules

N 

∨ ; according to the second and third rules of N 

∨ , the same conclusion was obtained, that is, patients x 3 , x 17 , x 25 have no

cold; and no patient meets the conditions of the fourth and fifth rules of N 

∨ . Therefore, the patients who have no cold are

x 1 , x 3 , x 7 , x 13 , x 17 , x 19 , x 22 , x 25 , x 30 , x 35 . Similarly, patients x 2 , x 4 , x 8 , x 10 , x 12 , x 16 , x 21 , x 23 , x 27 , x 28 , x 31 , x 32 , x 34 , x 36 are less

likely to have a cold according to the upper boundary region rules, and no patient is more likely to catch a cold by the

lower boundary region rules. 

Two methods are provided to calculate rough regions in this paper, which are the solution method based on upper and

lower approximations and the simplest expression method of rough regions in Section 3.3 . The second method is more

direct and flexible when we only need to know about one region or several regions. 

Case 2: β < 1 / 2 , α + β < 1 

When λPP = 0 , λPN = 19 , λBP = 10 , λBN = 9 , λNP = 21 , λNN = 0 , we have α = 0 . 5 and β = 0 . 45 . 

The upper and lower approximations and rough regions of the LLDDRS model are given as follows: 

LR (0 . 5 , 0 . 45) ∨ 1 (D 2 ) = { x 2 , x 4 , x 5 , x 6 , x 8 , x 9 , x 10 , x 11 , x 12 , x 14 , x 15 , x 16 , x 18 , x 20 , x 21 , x 23 , x 24 , x 26 , x 27 , x 28 , x 29 , x 31 , x 32 , x 33 , x 34 , x 36 } , 
LR (0 . 5 , 0 . 45) ∨ 1 (D 2 ) = { x 5 , x 6 , x 9 , x 11 , x 14 , x 15 , x 18 , x 20 , x 21 , x 24 , x 26 , x 28 , x 29 , x 33 } . 
posLR ∨ (D 2 ) = { x 5 , x 6 , x 9 , x 11 , x 14 , x 15 , x 18 , x 20 , x 21 , x 24 , x 26 , x 28 , x 29 , x 33 } ; 
negLR ∨ (D 2 ) = { x 1 , x 3 , x 7 , x 13 , x 17 , x 19 , x 22 , x 25 , x 30 , x 35 } ; 
UbnLR ∨ (D 2 ) = { x 2 , x 4 , x 8 , x 10 , x 12 , x 16 , x 23 , x 27 , x 31 , x 32 , x 34 , x 36 } ; 
LbnLR ∨ (D 2 ) = ∅ . 
Case 3: β < 1 / 2 , α + β > 1 

When λ = 0 , λ = 22 , λ = 6 , λ = 8 , λ = 18 , λ = 0 , we have α = 0 . 7 and β = 0 . 4 . 
PP PN BP BN NP NN 
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Fig. 2. Rough region information of the LLDDRS model under different cases. 

 

 

 

 

 

The upper and lower approximations and rough regions of the LLDDRS model are presented as follows: 

LR (0 . 7 , 0 . 4) ∨ 1 (D 2 ) = { x 2 , x 4 , x 5 , x 6 , x 8 , x 9 , x 10 , x 11 , x 12 , x 14 , x 15 , x 16 , x 18 , x 20 , x 21 , x 23 , x 24 , x 26 , x 27 , x 28 , x 29 , x 31 , x 32 , x 33 , x 34 , x 36 } , 
LR (0 . 7 , 0 . 4) ∨ 1 (D 2 ) = { x 5 , x 6 , x 9 , x 15 , x 26 } . 
posLR ∨ (D 2 ) = { x 5 , x 6 , x 9 , x 15 , x 26 } ; 
negLR ∨ (D 2 ) = { x 1 , x 3 , x 7 , x 13 , x 17 , x 19 , x 22 , x 25 , x 30 , x 35 } ; 
UbnLR ∨ (D 2 ) = { x 2 , x 4 , x 8 , x 10 , x 11 , x 12 , x 14 , x 16 , x 18 , x 20 , x 21 , x 23 , x 24 , x 27 , x 28 , x 29 , x 31 , x 32 , x 33 , x 34 , x 36 } ; 
LbnLR ∨ (D 2 ) = ∅ . Case 4: β ≥ 1 / 2 , α + β > 1 

When λPP = 0 , λPN = 42 , λBP = 6 , λBN = 18 , λNP = 18 , λNN = 0 , we have α = 0 . 8 and β = 0 . 6 . 

The upper and lower approximations and rough regions of the LLDDRS model are given as follows: 

LR (0 . 8 , 0 . 6) ∨ 1 (D 2 ) = { x 2 , x 4 , x 5 , x 6 , x 8 , x 9 , x 10 , x 11 , x 12 , x 14 , x 16 , x 18 , x 20 , x 21 , x 23 , x 24 , x 26 , x 27 , x 28 , x 29 , x 31 , x 33 , x 34 , x 36 } , 
LR (0 . 8 , 0 . 6) ∨ 1 (D 2 ) = { x 5 , x 6 , x 9 , x 15 , x 26 } . 
posLR ∨ (D 2 ) = { x 5 , x 6 , x 9 , x 26 } ; 
negLR ∨ (D 2 ) = { x 1 , x 3 , x 7 , x 13 , x 17 , x 19 , x 22 , x 25 , x 30 , x 32 , x 35 } ; 
UbnLR ∨ (D 2 ) = { x 2 , x 4 , x 8 , x 10 , x 11 , x 12 , x 14 , x 16 , x 18 , x 20 , x 21 , x 23 , x 24 , x 27 , x 28 , x 29 , x 31 , x 33 , x 34 , x 36 } ; 
LbnLR ∨ (D 2 ) = { x 15 } . 
The region information of the LLDDRS model under different cases is reflected in Fig. 2 . It is necessary to point out that

in Fig. 2 , polygons represent equivalence classes; the red ellipse represents the decision class D 2 ; and the blue, yellow, green

and purple solid circles denote the elements in the positive, negative, upper, and lower boundary regions, respectively. And

i ∈ 1 , 2 , . . . , 36 is the abbreviation of x i , which represents the i th patient. 

From Fig. 2 , we can find objects x 5 , x 6 , x 9 , x 26 always belong to the positive region posLR ∨ ( D 2 ) in four cases and object

x belongs to the positive region in three cases; objects x , x , x , x , x , x , x , x , x , x , x always belong to
15 1 3 7 13 17 19 22 25 30 32 35 
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Table 7 

The added objects of lower approximation sets of two classes. 

Grade k (α = 0 . 6 , β = 0 . 4) (α = 0 . 5 , β = 0 . 45) 

D 1 D 2 D 1 D 2 

0 ∅ ∅ ∅ ∅ 
1 x 32 x 15 ∅ ∅ 
2 x 12 , x 32 , x 36 x 3 , x 15 , x 21 , x 28 ∅ x 3 
3 x 8 , x 12 , x 31 , x 32 , x 36 x 3 , x 10 , x 15 , x 21 , x 28 , x 34 x 8 , x 31 x 3 , x 10 , x 34 

4 x 4 , x 8 , x 12 , x 23 , x 31 , x 32 , x 36 x 3 , x 10 , x 15 , x 21 , x 28 , x 34 x 4 , x 8 , x 23 , x 31 x 3 , x 10 , x 34 

5 x 4 , x 8 , x 12 , x 23 , x 31 , x 32 , x 36 x 3 , x 10 , x 15 , x 21 , x 28 , x 34 x 4 , x 8 , x 23 , x 31 x 3 , x 10 , x 34 

6 x 4 , x 8 , x 12 , x 23 , x 31 , x 32 , x 36 x 3 , x 10 , x 15 , x 21 , x 28 , x 34 x 4 , x 8 , x 23 , x 31 x 3 , x 10 , x 34 

7 x 4 , x 8 , x 12 , x 23 , x 31 , x 32 , x 36 x 3 , x 10 , x 15 , x 21 , x 28 , x 34 x 4 , x 8 , x 23 , x 31 x 3 , x 10 , x 34 

k (α = 0 . 7 , β = 0 . 4) (α = 0 . 8 , β = 0 . 6) 

D 1 D 2 D 1 D 2 
0 ∅ ∅ ∅ ∅ 
1 x 17 , x 25 , x 32 x 15 x 17 , x 25 , x 32 x 15 

x 2 , x 12 , x 16 , x 17 x 3 , x 11 , x 14 , x 15 , x 18 x 2 , x 12 , x 16 , x 17 x 3 , x 11 , x 14 , x 15 , x 18 

2 x 25 , x 27 , x 32 , x 36 x 20 , x 21 , x 24 , x 28 , x 29 , x 33 x 25 , x 27 , x 32 , x 36 x 20 , x 21 , x 24 , x 28 , x 29 , x 33 

x 2 , x 8 , x 12 , x 16 , x 17 x 3 , x 10 , x 11 , x 14 , x 15 , x 18 x 2 , x 8 , x 12 , x 16 , x 17 x 3 , x 10 , x 11 , x 14 , x 15 , x 18 

3 x 25 , x 27 , x 31 , x 32 , x 36 x 20 , x 21 , x 24 , x 28 , x 29 , x 33 , x 34 x 25 , x 27 , x 31 , x 32 , x 36 x 20 , x 21 , x 24 , x 28 , x 29 , x 33 , x 34 

x 2 , x 4 , x 8 , x 12 , x 16 , x 17 x 3 , x 10 , x 11 , x 14 , x 15 , x 18 x 2 , x 4 , x 8 , x 12 , x 16 , x 17 x 3 , x 10 , x 11 , x 14 , x 15 , x 18 

4 x 23 , x 25 , x 27 , x 31 , x 32 , x 36 x 20 , x 21 , x 24 , x 28 , x 29 , x 33 , x 34 x 23 , x 25 , x 27 , x 31 , x 32 , x 36 x 20 , x 21 , x 24 , x 28 , x 29 , x 33 , x 34 

x 2 , x 4 , x 8 , x 12 , x 16 , x 17 x 3 , x 10 , x 11 , x 14 , x 15 , x 18 x 2 , x 4 , x 8 , x 12 , x 16 , x 17 x 3 , x 10 , x 11 , x 14 , x 15 , x 18 

5 x 23 , x 25 , x 27 , x 31 , x 32 , x 36 x 20 , x 21 , x 24 , x 28 , x 29 , x 33 , x 34 x 23 , x 25 , x 27 , x 31 , x 32 , x 36 x 20 , x 21 , x 24 , x 28 , x 29 , x 33 , x 34 

x 2 , x 4 , x 8 , x 12 , x 16 , x 17 x 3 , x 10 , x 11 , x 14 , x 15 , x 18 x 2 , x 4 , x 8 , x 12 , x 16 , x 17 x 3 , x 10 , x 11 , x 14 , x 15 , x 18 

6 x 23 , x 25 , x 27 , x 31 , x 32 , x 36 x 20 , x 21 , x 24 , x 28 , x 29 , x 33 , x 34 x 23 , x 25 , x 27 , x 31 , x 32 , x 36 x 20 , x 21 , x 24 , x 28 , x 29 , x 33 , x 34 

x 2 , x 4 , x 8 , x 12 , x 16 , x 17 x 3 , x 10 , x 11 , x 14 , x 15 , x 18 x 2 , x 4 , x 8 , x 12 , x 16 , x 17 x 3 , x 10 , x 11 , x 14 , x 15 , x 18 

7 x 23 , x 25 , x 27 , x 31 , x 32 , x 36 x 20 , x 21 , x 24 , x 28 , x 29 , x 33 , x 34 x 23 , x 25 , x 27 , x 31 , x 32 , x 36 x 20 , x 21 , x 24 , x 28 , x 29 , x 33 , x 34 

Table 8 

The approximation accuracies of LLDDRS. 

( α, β) k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 

(0.6, 0.4) 23 
36 

25 
36 

5 
6 

17 
18 

1 1 1 1 

(0.5, 0.45) 29 
36 

29 
36 

5 
6 

17 
18 

1 1 1 1 

(0.7, 0.4) 11 
36 

15 
36 

5 
6 

17 
18 

1 1 1 1 

(0.8, 0.6) 11 
36 

15 
36 

5 
6 

17 
18 

1 1 1 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

the negative region negLR ∨ ( D 2 ) in four cases; objects x 2 , x 4 , x 8 , x 10 , x 12 , x 16 , x 23 , x 27 , x 31 , x 32 , x 34 , x 36 belong to the upper

boundary region UbnLR ∨ ( D 2 ) in four cases and objects x 21 , x 32 belong to the upper boundary region UbnLR ∨ ( D 2 ) in three

cases; the lower boundary region is almost close to ∅ ; and objects x 11 , x 14 , x 18 , x 20 , x 24 , x 28 , x 29 , x 33 lie between the positive

region and the upper boundary region. 

4.2. Comparison of different models 

Firstly, according to the definition of the lower approximation in the Pawlak rough set, there are 

R P (D 1 ) = { x 1 , x 7 , x 13 , x 19 , x 22 , x 30 , x 35 } , R P (D 2 ) = { x 5 , x 6 , x 9 , x 26 } . 
Then the approximation accuracy of A with respect to d in the RS model is ρp (A, d) = 

| R P (D 1 ) | + | R P (D 2 ) | 
| D 1 | + | D 2 | = 

11 
36 . 

Similarly, the approximation accuracies of A with respect to d in the LRS model can be calculated as follows: 

ρ(0 . 6 , 0 . 4) (A, d) = 

23 
36 , ρ(0 . 5 , 0 . 45) (A, d) = 

29 
36 , ρ(0 . 7 , 0 . 4) (A, d) = 

11 
36 , ρ(0 . 8 , 0 . 6) (A, d) = 

11 
36 . 

Before solving the approximation accuracy in the LLDDRS model, the objects added to the lower approximation sets of

decision classes due to the introduction of grade information are given in Table 7 . 

From Table 7 , when grade k is equal to 0, the lower approximation sets of two decision classes in the LLDDRS model

are equivalent to the lower approximation sets in the LRS model. When k ≥ 1, in most cases, the lower approximation sets

of two decision classes in the LLDDRS model contains the lower approximation sets in the LRS model. Then under different

grade demands, the approximation accuracies in the LLDDRS model are shown in Table 8 . 

From Table 8 , when k = 0 , the approximation accuracy of A with respect to d in the LLDDRS model is equivalent to the

corresponding result of the LRS model, and the approximation accuracies of these two models are greater than or equal

to the result of the RS model. With the increase of k , the performance of the LLDDRS model is much better than the RS

model and the LRS model. Therefore, it is necessary to introduce grade information into local rough sets (LRS). Parameter

k is used to characterize the intersection degree of equivalence classes and the complementary set of target concept in

the lower approximation, which is also called external grade. The increase of k means that the requirement for the external
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Table 9 

Data information. 

Data sets Abbreviation Samples Condition attributes Decision classes 

Car evaluation Car 1728 6 4 

Chess (King-Rook vs. King-Pawn) Chess 3196 36 2 

Statlog (landsat satellite) Landsat 6435 36 6 

Nursery Nursery 12,960 8 5 

Online news popularity Online 39,797 60 2 

Statlog (Shuttle) Shuttle 58,0 0 0 8 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

inclusion degree of equivalence classes about a target concept is reduced. In real life, people can set the value of k according

to different actual demands. 

5. Experimental analysis 

In this section, we verify the feasibility and validity of the proposed Local Logical Disjunction Double-quantitative Rough

Set (LLDDRS) model for rough analysis on large data sets. Firstly, by comparing the running time of the lower approximation

set of LLDDRS with that of the corresponding global logical disjunction double-quantitative rough set model (GLDDRS), the

superiority of the LLDDRS model in dealing with large data sets is verified. Secondly, the necessity of considering double

quantification indices in local models is illustrated by the contribution rate of double quantification indices in concept ap-

proximation. Finally, the advantage of the LLDDRS model in concept approximation is verified by comparing it with classical

Pawlak rough sets (RS) [20] and local rough sets (LRS) [24] based on approximation accuracy. 

The experimental data and basic settings are as follows. Six data sets derived from UCI Repository of machine learning

databases ( http://archive.ics.uci.edu/ml/datasets.html ) are used in the experimental analysis. Detailed information is shown

in Table 9 . All the experiments are performed in Matlab 2015b and run in a hardware environment with 2.6 GHz CPU,

8.0 GB of memory and 64-bit Windows 10. For numerical data sets (Landsat, Online and Shuttle), we employ a fuzzy C-

means clustering (FCM) technique to discretize numerical data into two nominal values based on attributes according to the

comparative results of different discretization methods in [8] . 

Ten experiments were conducted on each data set and each decision class in each data set is divided into 10 parts. Let

the universe U i of the i th ( i ∈ {1, 2, 3, 4, 5, 6}) data set S i be divided into t decision classes based on decision attributes D 

i ,

namely U/D 

i = { D 1 , D 2 , . . . , D t } . In the first experiment, we selected the top ten percent of each decision class as experimen-

tal data, namely D 11 + D 21 + · · · + D t1 . In the second experiment, we selected the top twenty percent of each decision class

as experimental data, namely D 11 + D 12 + D 21 + D 22 + · · · + D t1 + D t2 . By analogy, the tenth experiment runs on the entire

data set S i . 

5.1. The computational efficiency of the LLDDRS model 

In this subsection, we compare the time consumption of local and global logical disjunction double-quantitative rough

set models (LLDDRS and GLDDRS) in computing approximation sets to illustrate the superiority of the LLDDRS model in

processing large data. In each experiment on each data set, we select the first decision class on the current data set as

the target concept. Considering the moderate risk preference, we set the decision risk parameters α, β to 0.8 and 0.2,

respectively. In order to enhance the reliability of the experiments, we increase k from 1 to 5 step by step, and take the

average of five results as the final experimental results. According to the analysis in Section 2.3 , the time consumption

of upper approximation of these two models is the same in essence by the optimization of global model. We give the

computational time of the lower approximation in LLDDRS and GLDDRS models. Detailed results are shown in Table 10 ,

where the computational time is measured in seconds. 

As can be seen from Table 10 , the time consumption of the LLDDRS model in approximate calculation is always less than

that of the global logical disjunction double-quantitative rough set (GLDDRS) model. More intuitive comparisons are shown

in Fig. 3 . From Fig. 3 , we can see intuitively that the LLDDRS model performs better than the GLDDRS model in terms of

computing time of concept approximation. 

At the same time, in order to understand the fluctuation of running time with the change of grade parameter k , the

average running time of each model is calculated on six data sets. Details are shown in Table 11 . 

From Table 11 , we can also see that the LLDDRS model is stable and good. In fact, by using time complexity analysis in

Section 3.1 , the running time of the GLDDRS model is approximately | U |/| X | times that of the LLDDRS model, where | U | is

the number of objects in a data set and | X | is the number of objects in the target concept X . When | X | � | U |, the superiority

of the LLDDRS model in processing large data is obvious. 

5.2. The importance of double quantification indices 

The LLDDRS model uses conditional probability and internal and external grades to reflect the relative and absolute

quantitative information between information granules and the target concept. We illustrate the importance of these two

http://archive.ics.uci.edu/ml/datasets.html
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Table 10 

The running time of the lower approximation of the target concept in LLDDRS and GLDDRS models. 

Data Models Experiments 

1st 2nd 3th 4th 5th 6th 7th 8th 9th 10th 

Car LLDDRS 0.0371 0.0801 0.1682 0.2781 0.4334 0.5780 0.7563 0.9568 1.2027 1.4744 

GLDDRS 0.0494 0.1091 0.2216 0.4462 0.5963 0.7992 1.0493 1.3532 1.6999 1.9939 

Chess LLDDRS 0.0683 0.1913 0.4622 0.6989 1.0623 1.4688 1.9713 2.5465 3.2955 4.1513 

GLDDRS 0.1190 0.3937 0.7872 1.3312 1.9632 2.7916 3.5119 4.4665 4.9637 5.9914 

Landsat LLDDRS 0.0778 0.2615 0.5659 0.9814 1.5279 2.1945 3.0069 3.7305 4.8846 5.7193 

GLDDRS 0.3479 1.0660 2.3773 3.9871 6.1417 8.7966 12.1174 15.7762 19.7405 24.0861 

Nursery LLDDRS 0.4145 1.6067 3.3070 5.8738 8.5053 10.7569 14.3608 18.6430 23.6335 28.8814 

GLDDRS 1.0796 4.1672 8.8823 14.1527 21.9379 31.4657 42.8750 56.7955 71.2620 88.2769 

Online LLDDRS 1.8262 7.1961 16.8827 28.9959 46.8481 67.6585 92.7806 119.7735 153.3008 182.8564 

GLDDRS 9.8514 40.1275 90.7077 159.1994 259.1084 363.4057 498.6125 649.3364 838.5681 999.1519 

Shuttle LLDDRS 14.5389 56.9905 128.1822 228.8923 352.8161 511.8825 696.5359 914.8937 1156.8072 1401.4428 

GLDDRS 18.7416 79.4400 180.4212 323.6495 4 96.794 9 717.2040 979.6348 1293.0284 1633.6303 1982.0055 

Fig. 3. Comparisons of running time results in the LLDDRS and GLDDRS models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

quantitative indices by their contribution rates in approximate concept. On the above six data sets, the contribution rates

of two indicators in each experiment are shown in Tables 12–17 . In Tables 12–17 , symbol T denotes the ordinal number

of experiments, and symbol ∗ denotes that no object is distinguished only by relative (or absolute) information. And C g is

the unique contribution rate of absolute quantitative information, C p is the unique contribution rate of relative quantitative

information and C p ∨ g is the shared contribution rate of double-quantitative information. 

From Tables 12 and 13 , on data Car and Chess, many objects cannot be distinguished within the probability threshold,

but they can be distinguished by using grade information. From Tables 14 , 17 , on data Landsat and Shuttle, some objects

can not be distinguished within the probability threshold, but they can be distinguished by using grade information, and

many objects can not be distinguished within grade threshold, but they can be distinguished by using probability informa-

tion. From Table 15 , on data Nursery, some objects can not be distinguished within the probability threshold, but they can

be distinguished by using grade information in the first four experiments. From Table 16 , on data Online, many objects can

not be distinguished within the probability threshold, but they can be distinguished by using grade information, and some

objects can not be distinguished within grade threshold, but they can be distinguished by using probability information.

Furthermore, on six data sets, we can see that many objects can only be identified by grade information. This further indi-

cates that only the relative quantitative information considering in concept approximation in local models may lead to the

inaccuracy and uncertainty of concept approximation, and the conclusion is the same as that in literature [49,50] . 
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Table 11 

The average running time of the lower approximation of the target concept in LLDDRS and GLDDRS models. 

Data Models Experiments 

1st 2nd 3th 4th 5th 6th 7th 8th 9th 10th 

Car LLDDRS 0.0364 ± 0.0020 0.0802 ± 0.0035 0.1778 ± 0.0251 0.2891 ± 0.0275 0.4385 ± 0.0559 0.5957 ± 0.0425 0.7572 ± 0.0106 0.9623 ± 0.0268 1.2064 ± 0.0259 1.4883 ± 0.0306 

GLDDRS 0.0492 ± 0.0018 0.1041 ± 0.0144 0.2134 ± 0.0315 0.4308 ± 0.1308 0.6242 ± 0.0635 0.7995 ± 0.0082 1.0482 ± 0.007 1.3637 ± 0.0310 1.7081 ± 0.0293 1.9402 ± 0.1035 

Chess LLDDRS 0.0687 ± 0.0029 0.1919 ± 0.0077 0.4536 ± 0.0602 0.7141 ± 0.0520 1.0814 ± 0.0665 1.4705 ± 0.0316 1.9739 ± 0.0408 2.5761 ± 0.0766 3.3855 ± 0.6797 4.2696 ± 1.1092 

GLDDRS 0.1219 ± 0.0083 0.4125 ± 0.0562 0.7950 ± 0.0800 1.3425 ± 0.0630 1.9704 ± 0.0479 2.7985 ± 0.0394 3.4860 ± 0.2351 4.3476 ± 0.5336 4.9932 ± 0.1661 6.0173 ± 0.1057 

Landsat LLDDRS 0.0773 ± 0.0017 0.2615 ± 0.0076 0.5619 ± 0.0188 0.9736 ± 0.0403 1.5037 ± 0.0464 2.1731 ± 0.0964 3.0099 ± 0.1439 3.7522 ± 0.075 4.8225 ± 0.161 5.7135 ± 0.0255 

GLDDRS 0.4405 ± 0.1617 1.1395 ± 0.1331 2.5343 ± 0.3254 3.9999 ± 0.0834 6.1199 ± 0.1084 8.8208 ± 0.1526 12.2677 ± 0.4359 15.9254 ± 0.5072 19.9567 ± 0.6812 24.3987 ± 0.7449 

Nursery LLDDRS 0.4139 ± 0.0170 1.6320 ± 0.1076 3.2508 ± 0.1374 5.8035 ± 0.2640 8.4906 ± 0.7127 10.8145 ± 0.2867 14.4031 ± 0.0957 18.5986 ± 0.2285 23.6097 ± 0.1573 28.8507 ± 0.2824 

GLDDRS 1.0681 ± 0.1214 4.0951 ± 0.5001 9.0208 ± 0.9924 14.1647 ± 0.1926 21.9224 ± 0.1495 31.3861 ± 0.2536 42.8043 ± 0.4388 57.9888 ± 2.4203 72.3376 ± 2.1061 90.2136 ± 4.4167 

Online LLDDRS 1.8327 ± 0.0783 7.2023 ± 0.1191 17.5414 ± 1.4362 29.1379 ± 0.8499 46.9845 ± 0.7310 67.9139 ± 1.8280 92.4512 ± 0.7750 119.7205 ± 0.7520 153.9327 ± 1.6165 183.2612 ± 2.0977 

GLDDRS 9.9168 ± 0.2447 41.0220 ± 1.9328 91.1574 ± 1.3320 159.1034 ± 1.9668 258.5769 ± 1.8871 363.9353 ± 2.9406 498.4074 ± 1.9284 648.4028 ± 3.8551 846.5226 ± 20.0261 998.0077 ± 4.7834 

Shuttle LLDDRS 14.5178 ± 0.1718 57.2001 ± 0.4694 128.1599 ± 0.7019 227.9144 ± 2.6598 352.8372 ± 0.8394 511.4598 ± 2.1838 696.3785 ± 2.5774 912.4170 ± 7.2827 1153.0499 ± 8.6884 1399.9962 ± 5.4039 

GLDDRS 18.8832 ± 0.8395 79.4746 ± 0.7327 180.3319 ± 0.6729 323.6641 ± 0.7755 496.9539 ± 0.9562 717.2569 ± 0.7930 979.7860 ± 0.8818 1293.0906 ± 0.6848 1633.5896 ± 0.5416 1981.5798 ± 1.3955 
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Table 12 

The unique and shared contribution rates of quantitative information to concept approximation on data Car. 

T k = 1 k = 2 k = 3 k = 4 k = 5 

C p ∨ g (%) C ḡ C p̄ C p ∨ g (%) C ḡ C p̄ C p ∨ g (%) C ḡ C p̄ C p ∨ g (%) C ḡ C p̄ C p ∨ g (%) C ḡ C p̄ 

1 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗

2 96.50 3.50% ∗ 95.11 4.89% ∗ 95.11 4.89% ∗ 95.11 4.89% ∗ 95.11 4.89% ∗

3 77.31 22.69% ∗ 70.50 29.50% ∗ 70.50 29.50% ∗ 70.50 29.50% ∗ 70.50 29.50% ∗

4 80.83 19.17% ∗ 75.14 24.86% ∗ 75.14 24.86% ∗ 75.14 24.86% ∗ 75.14 24.86% ∗

5 74.49 25.51% ∗ 67.13 32.87% ∗ 67.13 32.87% ∗ 67.13 32.87% ∗ 67.13 32.87% ∗

6 69.06 30.94% ∗ 60.73 39.27% ∗ 60.73 39.27% ∗ 60.73 39.27% ∗ 60.73 39.27% ∗

7 63.36 36.64% ∗ 54.52 45.48% ∗ 54.52 45.48% ∗ 54.52 45.48% ∗ 54.52 45.48% ∗

8 65.59 34.41% ∗ 52.30 47.70% ∗ 52.30 47.70% ∗ 52.30 47.70% ∗ 52.30 47.70% ∗

9 62.87 37.13% ∗ 49.74 50.26% ∗ 49.74 50.26% ∗ 49.74 50.26% ∗ 49.74 50.26% ∗

10 67.07 32.93% ∗ 48.09 51.91% ∗ 48.09 51.91% ∗ 48.09 51.91% ∗ 48.09 51.91% ∗

Table 13 

The unique and shared contribution rates of quantitative information to concept approximation on data Chess. 

T k = 1 k = 2 k = 3 k = 4 k = 5 

C p ∨ g (%) C ḡ (%) C p̄ C p ∨ g (%) C ḡ (%) C p̄ C p ∨ g (%) C ḡ (%) C p̄ C p ∨ g (%) C ḡ (%) C p̄ C p ∨ g (%) C ḡ (%) C p̄ 

1 77.44 22.56 ∗ 73.02 26.98 ∗ 72.33 27.67 ∗ 71.88 28.13 ∗ 71.88 28.13 ∗

2 75.26 24.74 ∗ 67.77 32.23 ∗ 67.24 32.76 ∗ 67.03 32.97 ∗ 67.03 32.97 ∗

3 70.15 29.85 ∗ 63.11 36.89 ∗ 62.32 37.68 ∗ 62.19 37.81 ∗ 62.19 37.81 ∗

4 73.87 26.13 ∗ 64.36 35.64 ∗ 63.39 36.61 ∗ 62.65 37.35 ∗ 62.50 37.50 ∗

5 80.55 19.45 ∗ 70.15 29.85 ∗ 69.09 30.91 ∗ 68.44 31.56 ∗ 68.31 31.69 ∗

6 84.26 15.74 ∗ 75.24 24.76 ∗ 74.29 25.71 ∗ 73.71 26.29 ∗ 73.59 26.41 ∗

7 86.78 13.22 ∗ 78.84 21.16 ∗ 77.99 22.01 ∗ 77.47 22.53 ∗ 77.37 22.63 ∗

8 86.54 13.46 ∗ 78.83 21.17 ∗ 78.02 21.98 ∗ 77.47 22.53 ∗ 77.38 22.62 ∗

9 86.19 13.81 ∗ 78.35 21.65 ∗ 77.50 22.50 ∗ 76.99 23.01 ∗ 76.91 23.09 ∗

10 86.60 13.40 ∗ 78.70 21.30 ∗ 77.90 22.10 ∗ 77.29 22.71 ∗ 77.22 22.78 ∗

Table 14 

The unique and shared contribution rates of quantitative information to concept approximation on data Landsat. 

T k = 1 k = 2 k = 3 k = 4 k = 5 

C p ∨ g (%) C ḡ (%) C p̄ (%) C p ∨ g (%) C ḡ (%) C p̄ (%) C p ∨ g (%) C ḡ (%) C p̄ C p ∨ g (%) C ḡ (%) C p̄ C p ∨ g (%) C ḡ (%) C p̄ 

1 91.61 1.07 7.32 91.28 1.42 7.30 98.58 1.42 ∗ 98.58 1.42 ∗ 98.58 1.42 ∗

2 88.06 2.55 9.39 88.93 2.99 8.08 88.93 2.99 8.08% 97.01 2.99 ∗ 97.01 2.99 ∗

3 85.90 3.63 10.47 85.76 4.75 9.49 85.71 4.81 9.49% 85.65 4.86 9.48% 95.02 4.98 ∗

4 83.33 3.96 12.70 84.50 5.28 10.22 83.99 5.85 10.16% 83.87 5.98 10.14% 83.75 6.12 10.13% 

5 82.16 4.18 13.66 83.38 5.97 10.65 82.62 6.83 10.55% 82.37 7.11 10.52% 81.97 7.57 10.47% 

6 82.43 4.12 13.44 84.47 5.66 9.87 83.91 6.28 9.81% 83.12 7.17 9.71% 82.70 7.63 9.67% 

7 83.41 3.84 12.76 85.56 5.57 8.87 84.89 6.31 8.80% 84.32 6.94 8.74% 83.62 7.71 8.67% 

8 83.32 4.05 12.63 84.17 5.78 10.05 84.59 6.72 8.69% 84.05 7.31 8.63% 83.50 7.92 8.58% 

9 81.94 4.10 13.96 82.46 6.15 11.39 83.33 6.58 10.10% 82.99 7.64 9.37% 82.55 8.13 9.32% 

10 73.83 4.49 21.68 73.87 6.60 19.53 83.13 7.15 9.72% 82.98 8.02 9.00% 82.58 8.47 8.96% 

Table 15 

The unique and shared contribution rates of quantitative information to concept approximation on data Nursery. 

T k = 1 k = 2 k = 3 k = 4 k = 5 

C p ∨ g (%) C ḡ C p̄ C p ∨ g (%) C ḡ C p̄ C p ∨ g (%) C ḡ C p̄ C p ∨ g (%) C ḡ C p̄ C p ∨ g (%) C ḡ C p̄ 

1 79.20 20.80% ∗ 73.71 26.29% ∗ 46.92 53.08% ∗ 40.73 59.27% ∗ 35.21 64.79% ∗

2 100 ∗ ∗ 98.03 1.97% ∗ 95.12 4.88% ∗ 72.50 27.51% ∗ 66.67 33.33% ∗

3 100 ∗ ∗ 100 ∗ ∗ 97.81 2.19% ∗ 94.76 5.24% ∗ 85.02 14.98% ∗

4 97.30 ∗ 2.70% 100 ∗ ∗ 99.11 0.90% ∗ 99.11 0.90% ∗ 99.11 0.90% ∗

5 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗

6 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗

7 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗

8 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗

9 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗

10 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗
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Table 16 

The unique and shared contribution rates of quantitative information to concept approximation on data Online. 

T k = 1 k = 2 k = 3 k = 4 k = 5 

C p ∨ g (%) C ḡ (%) C p̄ (%) C p ∨ g (%) C ḡ (%) C p̄ C p ∨ g (%) C ḡ (%) C p̄ C p ∨ g (%) C ḡ (%) C p̄ C p ∨ g (%) C ḡ (%) C p̄ 

1 74.54 24.28 1.18 65.57 34.43 ∗ 59.52 40.48 ∗ 55.59 44.41 ∗ 52.43 47.57 ∗

2 74.33 24.93 0.74 64.36 35.64 ∗ 58.54 41.46 ∗ 55.08 44.93 ∗ 52.45 47.55 ∗

3 73.32 25.20 1.48 63.47 36.53 ∗ 56.74 43.26 ∗ 52.68 47.32% ∗ 50.02% 49.98 ∗

4 72.56 25.52 1.92 62.58 36.90 0.52% 56.53 43.47 ∗ 52.30 47.70 ∗ 49.27 50.74 ∗

5 71.72 26.56 1.72 61.21 38.20 0.59% 54.94 44.89 0.16% 50.79 49.21 ∗ 47.77 52.23 ∗

6 72.44 26.01 1.55 61.53 38.19 0.28% 54.83 45.17 ∗ 50.58 49.42 ∗ 47.35 52.65 ∗

7 71.94 26.08 1.97 60.93 38.56 0.51% 54.04 45.96 ∗ 49.69 50.31 ∗ 46.68 53.32 ∗

8 71.35 26.35 2.30 60.59 38.71 0.70% 53.79 46.09 0.12% 49.10 50.90 ∗ 46.15 53.85 ∗

9 71.20 25.66 3.14 61.22 37.74 1.04% 54.21 45.21 0.58% 49.44 50.03 0.53% 46.15 53.48 0.37% 

10 71.91 24.96 3.13 61.52 37.06 1.42% 54.81 44.64 0.55% 50.09 49.64 0.27% 46.89 52.86 0.25% 

Table 17 

The unique and shared contribution rates of quantitative information to concept approximation on data Shuttle. 

T k = 1 k = 2 k = 3 k = 4 k = 5 

C p ∨ g (%) C ḡ (%) C p̄ (%) C p ∨ g (%) C ḡ (%) C p̄ (%) C p ∨ g (%) C ḡ (%) C p̄ (%) C p ∨ g (%) C ḡ (%) C p̄ (%) C p ∨ g (%) C ḡ (%) C p̄ (%) 

1 59.31 0.15 40.53 59.30 0.18 40.52 59.21 0.33 40.46 85.90 0.68 13.42 87.50 0.98 11.52 

2 4 8.4 9 0.04 51.46 52.19 0.15 47.66 53.57 0.18 46.25 54.73 0.24 45.03 59.06 0.26 40.68 

3 42.26 0.04 57.70 51.69 0.14 48.17 51.98 0.22 47.80 53.40 0.22 46.38 54.54 0.22 45.24 

4 41.01 0.04 58.95 46.92 0.07 53.01 51.64 0.07 48.29 51.85 0.15 47.99 51.81 0.24 47.95 

5 35.97 0.02 64.01 44.98 0.03 54.99 51.66 0.05 48.29 52.00 0.06 47.94 52.00 0.07 47.94 

6 31.11 0.01 68.87 39.59 0.03 60.38 45.28 0.06 54.66 52.11 0.06 47.83 52.11 0.06 47.83 

7 21.61 0.02 78.37 39.32 0.04 60.64 45.05 0.06 54.88 50.34 0.06 49.60 51.71 0.07 48.22 

8 21.65 0.01 78.34 39.42 0.02 60.57 40.01 0.02 59.97 45.54 0.04 54.42 51.60 0.04 48.36 

9 21.41 0.01 78.59 39.32 0.01 60.67 39.91 0.02 60.08 40.54 0.02 59.44 41.94 0.04 58.02 

10 21.53 0.01 78.47 39.34 0.01 60.64 39.91 0.06 60.03 40.38 0.06 59.56 40.69 0.08 59.23 

Table 18 

The approximation accuracy on data Car. 

Times RS LRS LLDDRS 

k = 1 k = 2 k = 3 k = 4 k = 5 

1 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

2 0.9511 0.9511 0.9856 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

3 0.7050 0.7050 0.9119 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

4 0.7514 0.7514 0.9296 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

5 0.6713 0.6713 0.9011 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

6 0.6073 0.6073 0.8793 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

7 0.5452 0.5452 0.8604 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

8 0.5230 0.5230 0.7974 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

9 0.4974 0.4974 0.7912 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

10 0.4809 0.4809 0.7170 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, the relative and absolute quantitative information are two unique objective aspects in describing approxi-

mation spaces. Each has its own virtues and application environments, so none can be neglected. 

5.3. The superiority of the LLDDRS model in concept approximation 

In the following, we verify the advantages of the LLDDRS model in concept approximation by comparing the proposed

LLDDRS model with classical Pawlak rough sets (RS) [20] and local rough sets (LRS) [24] based on approximation accuracy.

The approximation accuracies of the three rough set models are shown in Tables 18–23 , where times denote the ordinal

number of experiments. 

From Table 18 , in the first experiment of data Car, the approximation accuracies of the LLDDRS, RS, LRS models are

the same when k changes from 1 to 5. In the second experiment, the approximation accuracies of the LLDDRS model is

slightly higher than that of the RS and LRS models when k changes from 1 to 5. The next eight experiments show that the

approximation accuracies of the LLDDRS model is much higher than those of the other two models when k changes from

1 to 5. The approximation accuracy of the LLDDRS model is increasing as people’s requirements for the external inclusion

grade of equivalence classes about concepts are reduced (namely k is increasing). From Tables 19–23 , on data Chess, Landsat,

Online and Shuttle, the 10 experimental results show that the approximation accuracies of the LLDDRS model are much

higher than those of the RS and LRS models when k changes from 1 to 5. From Table 21 , on data Nursery, the first four
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Table 19 

The approximation accuracy on data Chess. 

Times RS LRS LLDDRS 

k = 1 k = 2 k = 3 k = 4 k = 5 

1 0.6937 0.7188 0.9281 0.9844 0.9938 1.0 0 0 0 1.0 0 0 0 

2 0.6578 0.6703 0.8906 0.9891 0.9969 1.0 0 0 0 1.0 0 0 0 

3 0.6135 0.6219 0.8865 0.9854 0.9979 1.0 0 0 0 1.0 0 0 0 

4 0.6023 0.6250 0.8461 0.9711 0.9859 0.9977 1.0 0 0 0 

5 0.6650 0.6831 0.8481 0.9738 0.9888 0.9981 1.0 0 0 0 

6 0.7208 0.7359 0.8734 0.9781 0.9906 0.9984 1.0 0 0 0 

7 0.7607 0.7737 0.8915 0.9812 0.9920 0.9987 1.0 0 0 0 

8 0.7609 0.7738 0.8941 0.9816 0.9918 0.9988 1.0 0 0 0 

9 0.7590 0.7691 0.8924 0.9816 0.9924 0.9990 1.0 0 0 0 

10 0.7631 0.7722 0.8917 0.9812 0.9912 0.9991 1.0 0 0 0 

Table 20 

The approximation accuracy on data Landsat. 

Times RS LRS LLDDRS 

k = 1 k = 2 k = 3 k = 4 k = 5 

1 0.7941 0.8576 0.8669 0.8700 0.8700 0.8700 0.8700 

2 0.7477 0.8274 0.8491 0.8529 0.8529 0.8529 0.8529 

3 0.7054 0.8075 0.8380 0.8478 0.8483 0.8488 0.8498 

4 0.6552 0.7783 0.8104 0.8216 0.8266 0.8278 0.8289 

5 0.6399 0.7601 0.7932 0.8084 0.8158 0.8183 0.8223 

6 0.6398 0.7619 0.7946 0.8075 0.8130 0.8207 0.8248 

7 0.5871 0.7651 0.7957 0.8103 0.8167 0.8222 0.8291 

8 0.5764 0.7603 0.7924 0.8069 0.8150 0.8202 0.8257 

9 0.5602 0.7527 0.7848 0.8020 0.8056 0.8149 0.8192 

10 0.5610 0.7543 0.7897 0.8076 0.8124 0.8200 0.8241 

Table 21 

The approximation accuracy on data Nursery. 

Times RS LRS LLDDRS 

k = 1 k = 2 k = 3 k = 4 k = 5 

1 0.3398 0.3521 0.4 4 45 0.4777 0.7504 0.8644 1.0 0 0 0 

2 0.3421 0.3451 0.3451 0.3521 0.3629 0.4761 0.5177 

3 0.3413 0.3439 0.3439 0.3439 0.3516 0.3629 0.4045 

4 0.3332 0.3424 0.3424 0.3424 0.3455 0.3455 0.3455 

5 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 

6 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 

7 0.3334 0.3334 0.3334 0.3334 0.3334 0.3334 0.3334 

8 0.3334 0.3334 0.3334 0.3334 0.3334 0.3334 0.3334 

9 0.3334 0.3334 0.3334 0.3334 0.3334 0.3334 0.3334 

10 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 

Table 22 

The approximation accuracy on data Online. 

Times RS LRS LLDDRS 

k = 1 k = 2 k = 3 k = 4 k = 5 

1 0.4013 0.4215 0.5566 0.6428 0.7081 0.7583 0.8039 

2 0.4111 0.4350 0.5794 0.6758 0.7430 0.7898 0.8293 

3 0.3557 0.3821 0.5108 0.6020 0.6734 0.7252 0.7639 

4 0.3162 0.3443 0.4623 0.5456 0.6090 0.6582 0.6988 

5 0.2847 0.3096 0.4216 0.5010 0.5618 0.6096 0.6481 

6 0.2646 0.2888 0.3903 0.4673 0.5268 0.5710 0.6099 

7 0.2473 0.2725 0.3686 0.4435 0.5042 0.5483 0.5837 

8 0.2319 0.2581 0.3504 0.4211 0.4788 0.5257 0.5593 

9 0.2241 0.2514 0.3382 0.4038 0.4589 0.5032 0.5405 

10 0.2171 0.2439 0.3250 0.3875 0.4405 0.4842 0.5173 
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Table 23 

The approximation accuracy on data Shuttle. 

Times RS LRS LLDDRS 

k = 1 k = 2 k = 3 k = 4 k = 5 

1 0.3593 0.7806 0.7818 0.7820 0.7832 0.7860 0.7884 

2 0.3356 0.7829 0.7832 0.7841 0.7842 0.7848 0.7849 

3 0.2070 0.7829 0.7833 0.7840 0.7847 0.7847 0.7847 

4 0.1680 0.7827 0.7830 0.7832 0.7833 0.7839 0.7846 

5 0.1584 0.7812 0.7814 0.7814 0.7816 0.7817 0.7817 

6 0.1589 0.7811 0.7812 0.7814 0.7815 0.7816 0.7816 

7 0.1590 0.7809 0.7811 0.7812 0.7814 0.7814 0.7815 

8 0.1593 0.7805 0.7805 0.7806 0.7806 0.7808 0.7808 

9 0.1586 0.7804 0.7804 0.7805 0.7805 0.7805 0.7807 

10 0.1579 0.7798 0.7799 0.7799 0.7803 0.7803 0.7804 

Fig. 4. The approximation accuracy results of the three models of the 5 experiments. 

 

 

 

 

 

 

 

 

 

experiments show that the performance of the LLDDRS model is the best, followed by the LRS model, and the RS model is

the worst one. In the remaining six experiments, the three models showed the same performance. Through experimental

comparisons, the overall performances of the LLDDRS model and the LRS model are always better than that of the RS model,

and the LLDDRS model performs best in the three models. Therefore, it is meaningful to study knowledge discovery and rule

extraction based on local rough set theory and double-quantitative information. 

In order to more directly reflect the advantage of the LLDDRS model, the results of the 2nd, 4th, 6th, 8th and 10th

experiments under k = 1 , 3 , 5 are shown in Fig. 4 . It can be seen from Fig. 4 that the performance of the proposed LLDDRS

model is quite good. 

At the same time, in order to show more vividly the advantage of combining relative information with absolute in-

formation to approximate concepts more accurately, we show the results of the 2nd, 6th and 10th experiments under

k = 1 , 2 , 3 , 4 , 5 in Figs. 5–7 . In order to make the trend of data change more obvious, we fine-tune the data without af-

fecting the logical size of the data. 
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Fig. 5. Comparisons of approximation accuracies of three models under different grades in the 2nd experiment. 

Fig. 6. Comparisons of approximation accuracies of three models under different grades in the 6th experiment. 
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Fig. 7. Comparisons of approximation accuracies of three models under different grades in the 10th experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figs. 5–7 , the results of the RS and LRS models are not affected by the variation of the grade parameter k , so the corre-

sponding results with the change of k are on a straight broken line. The purpose is to compare the approximation accuracy

of the LLDDRS model with that of the RS and LRS models under different grades, respectively. From Figs. 5–7 , although the

approximation accuracy of the proposed LLDDRS model decreases with the decrease of k , the results of the LLDDRS model

are still better than those of the other two models. Therefore, compared with the RS and LRS models, the proposed LLDDRS

model has some advantages in the concept approximation even when people require higher grade information. 

6. Conclusions 

Relative and absolute quantitative information reflect the essence of objective things from different sides and neither

can be neglected for effective description. In order to identify objects to the greatest extent, we proposed a Local Logical

Disjunction Double-quantitative Rough Set model (LLDDRS) based on the logical disjunction combination of the double quan-

tification information. The important properties, rough regions and decision rules of the LLDDRS model are studied, and the

corresponding algorithms are designed. Meanwhile, the relationships of the LLDDRS model and other models are analyzed

systematically. Theoretical analyses and experimental results show that: (1) the LLDDRS model based on local idea is effi-

cient to compute approximations of concepts in large data sets when compared with global models. (2) The LLDDRS model

based on double-quantitative information provides more accurate approximation space description when compared with

single quantitative models. (3) The LLDDRS model provides an efficient method for rough data analysis in large data sets.

This paper provides a framework of local logical disjunction double-quantitative rough sets under equivalence relations. In

the future, we can further study local logical disjunction double-quantitative rough sets from different binary relations, fuzzy

concepts, two universes and multi-granulation to enhance the usability of the local logical disjunction double-quantitative

rough set theory. These studies are of great significance and value, which can help people mine data, discover knowledge

and extract rules in large-scale data situations. 
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